La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Activités, problèmes, situations… Extraits de programmes, Théorie de lapprentissage, Polya, Brousseau, Douady, Gras… Exemples.

Présentations similaires


Présentation au sujet: "Activités, problèmes, situations… Extraits de programmes, Théorie de lapprentissage, Polya, Brousseau, Douady, Gras… Exemples."— Transcription de la présentation:

1 Activités, problèmes, situations… Extraits de programmes, Théorie de lapprentissage, Polya, Brousseau, Douady, Gras… Exemples.

2 Extraits de programmes (B.O. et accompagnement) : procédures personnelles... avant procédures expertes. Mesure de l'impact dune formation en mathématiques Pas au nombre de théorèmes et de propriétés quon retient, Mais à la manière daborder certaines situations capacités de formalisation et de conceptualisation, daction et dinterprétation rationnelle de faits sociaux, etc.

3 Extraits de programmes (B.O. et accompagnement) : Sensibilité propre de l'enseignant : exposé rigoureux et sans faille plaisir dans la recherche de problèmes choix du métier denseignant, il importe que les deux soient présents dans son exercice.

4 Les théories de l'apprentissage. Modèle de la tête vide. Modèle constructiviste. Modèle des petites marches (behavioriste.)

5 Comment poser et résoudre un problème ? György Pólya Dunod, Paris, 1968.

6 Trois principes pour enseigner. Lapprentissage actif. Les phases consécutives. La meilleure motivation. Laisser les étudiants découvrir seuls le plus de choses Le professeur doit accorder toute son attention au choix, à la formulation, à la présentation… Exploratoire Solution formelle Assimilation

7 Théorie des situations. Guy Brousseau.

8 Les phases consécutives de l'apprentissage. Institutionnalisation. Expérimentation Conjecture.Démonstration. Recherche. Application Réinvestissement.

9 Quelques effets de contrat ou leffacement de la volonté denseigner. Leffet Topaze ou le contrôle de lincertitude. Le glissement métacognitif. Leffet Jourdain ou le malentendu fondamental.

10 Jeux de cadres et dialectique outil-objet. Régine Douady. R.D.M., vol. 7, n°2, 1986

11 d' Outil pour résoudre un problème d' Objet prenant place dans la construction d'un savoir organisé Un concept mathématique joue alternativement le rôle Dialectique outil-objet

12 faire avancer les phases de recherche faire évoluer les conceptions de l'élève L'enseignant provoque des changements de cadres pour Jeux de cadres

13 On peut construire des connaissances mathématiques, grâce à des problèmes dont : L'énoncé est court, Compte-tenu de leurs connaissances, les élèves peuvent envisager une procédure de construction, mais ils ne peuvent pas résoudre complètement le problème, Les connaissances visées par l'apprentissage, sont des outils adaptés au problème, Le problème peut se formuler dans au moins deux cadres différents

14 Pour un enseignement problématisé des Mathématiques au Lycée. Groupe « Problématique Lycée ». APMEP., brochure 150 et 154, 2003

15 Le quadrilatère ABCD a été dessiné dans un repère orthonormé qui a disparu. Le retrouver à partir de la donnée des coordonnées dans ce repère, des points suivants : A(-4;2) B(2;-6) C(3;6) D(1;2) A B C D Compréhension réversible de la notion de repère cartésien. Le retournement de situation est un basculement de sens : du savoir rencontré incidemment (milieu objectif), on passe aux objets mathématiques comme principe de cohérence et de nécessité, et comme outils de structuration.(I. Bloch) Variantes et prolongements : Recherche du nombre minimal de points à donner. Coordonnées d'un point, par exemple {I} = (AD) (BC) Repère orthogonal, repère affine... « Jeu de groupes » : construction de la figure dans un repère, reproduction sur calque, échange entre deux groupes. A partir d'une droite sur une feuille A4, retrouver le repère dans lequel cette droite a pour équation 3x + y – 4 = 0

16 1. On connaît les milieux des 3 côtés d'un triangle. Retrouver ses sommets. 2. Construire un triangle ABC dont les médianes issues de B et de C sont perpendiculaires. Trouver, dans de tels triangles, l'expression de AB² + AC² en fonction de BC². 3. On connaît les milieux des côtés d'un pentagone Retrouver les 5 sommets. (Brochure Académique de la classe de seconde)

17 1. L'entier le plus proche d'un nombre a est 7. Trouver des valeurs possibles de a. 2. Trouver plusieurs nombres dont la valeur tronquée à 0,001 près est 5,176. Soit b un tel nombre. Quelles sont les valeurs possibles de b ? 3. Trouver plusieurs nombres dont la valeur arrondie à 0,001 près est 5,176. Soit c un tel nombre. Quelles sont les valeurs possibles de c ?

18 On donne deux baguettes de longueurs respectives a et b. Construire sur le papier des quadrilatères dont ces deux baguettes sont des réalisations matérielles des diagonales. Les classer dans un tableau suivant leurs propriétés. Révision des figures quadrangulaires par un examen de leurs propriétés. La validation. Le contrôle physique peut être mené de concert avec le dessin ce qui permet de valider ou invalider des propositions. Le tableau permet d'expliciter une classification après exhaustion. On prolonge ensuite au cas où a = b.

19 Un tétraèdre régulier de côté a cm doit être posé sur une face entre deux étagères espacées de ¾ a cm. Est- ce possible ? Application de propriétés de géométrie de l'espace. Le changement de cadre. L'extension des propriétés du triangle rectangle à l'espace permettent de résoudre complètement ce problème. Variante. ( Affaire de logique n°181, Le Monde du 25/07/00 ) Par une après-midi pluvieux d'été, quatre enfants remplacent leurs constructions de sable par des réalisations en pâte à modeler. Chacun a utilisé intégralement un bâton de pâte à modeler (les bâtons sont identiques) pour réaliser le premier une boule, le deuxième un téraèdre régulier, le troisième une pyramide à base carrée (dont les faces triangulaires sont équilatérales), le quatrième un cube. Classez ces solides par ordre croissant de hauteur.

20 Prise en compte des ordres de grandeur. Combien y-a-t-il de molécules d'eau dans une goutte d'eau ? Y-en-a-t-il beaucoup plus, beaucoup moins que de gouttes d'eau dans la Méditerranée ? (M. Artigue, Repères janvier 2004) Le débat scientifique. Les réponses peuvent d'abord être regroupées en deux parties : beaucoup plus et beaucoup moins, puis en précisant des ordres de grandeur de ces « beaucoup »... La question conduit aussi à donner des ordres de grandeur pour la surface de la Méditerranée, pour sa profondeur moyenne, à retrouver la masse molaire de l'eau et le nombre d'Avogadro.

21 Comment ? Quoi ? Quand ? Le travail de groupes… Un nombre limité de fois dans lannée. Les notions nodales. Jamais en DS.


Télécharger ppt "Activités, problèmes, situations… Extraits de programmes, Théorie de lapprentissage, Polya, Brousseau, Douady, Gras… Exemples."

Présentations similaires


Annonces Google