La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Bienvenue au cours Mat 350 Probabilités et statistiques.

Présentations similaires


Présentation au sujet: "Bienvenue au cours Mat 350 Probabilités et statistiques."— Transcription de la présentation:

1

2 Bienvenue au cours Mat 350 Probabilités et statistiques

3 Enseignant u Claude Blais Maître d'enseignement ( mathématiques ) Service des enseignements généraux (SEG) Local B-2544 Téléphone: Télécopieur: Adresse électronique:

4 Introduction u Pourquoi un cours de statistiques dans un programme en ingénierie ? La résolution dun grand nombre de problèmes dingénierie fait appel à une compréhension de la variabilité ainsi quà une connaissance des outils descriptifs et analytiques reliés à la variabilité.

5 C'est quoi les statistiques? u C'est l'art de recueillir, présenter, analyser et utiliser des observations (des données) afin d'aider à la prise de décisions et à la résolution de problèmes. u Le premier phénomène qui ressort des observations: la variabilité des données.

6 Un premier exemple u On s'intéresse à un nouvel alliage aluminium et lithium; on analyse sa résistance à la compression. u 80 tests sont effectués (les unités sont en psi) Les données sont présentées comme elles ont été recueillies. Ainsi, il n'est pas facile de répondre à une question comme: quel est le pourcentage des tests qui donnent une résistance inférieure à 120 psi?

7 Les deux types d'études statistiques u La statistique descriptive ou statistique déductive u La statistique inductive ou inférence statistique

8 La statistique descriptive u La statistique descriptive (ou statistique déductive ) s'occupe de la description des données: tableau, graphique, pourcentage,... La moyenne est de 162,7 psi; L' écart-type est de 33,8 psi; Dans 50% des cas, la résistance est inférieure ou égale à 160 psi; 10% des essais ont donné une résistance à la compression inférieure à 120 psi.

9 La statistique inductive u La statistique inductive (ou inférence statistique ) s'occupe de tirer des conclusions générales à partir d'expériences et de faire des prévisions. u Dans le contexte de l exemple sur la résistance d un alliage on pourra affirmer: La résistance moyenne à la rupture de cet alliage se situe entre 155,15 et 170,18 psi. Cette affirmation possède un niveau de confiance de 95%.

10 Les définitions de base u Population et individus u Variables u Types de variables u Échantillon u But d'une étude statistique

11 Population et individus u Individu ou unité statistique l Une unité distincte chez laquelle on peut observer une ou plusieurs caractéristiques données.

12 Population et individus u Population l Ensemble des individus (ou unités statistiques ) pour lequel on considère une ou plusieurs caractéristiques u Taille de la population l Le nombre d'individus constituant la population. Notation : N

13 Variable statistique (1) u Une variable est une caractéristique dune unité statistique susceptible de variations observables. l Notation : X, Y, W,... ( MAJUSCULE ) u Valeurs ou modalités: les différentes valeurs quune variable peut prendre. l Notation : x 1, x 2,... ( minuscule )

14 Variable statistique (2) u Valeurs possibles tous les résultats possibles a priori si on fait une observation d'une variable u Valeur observée résultat a posteriori d'une observation d'une variable

15 Types de variables u Variable qualitative u Variable quantitative

16 Variable qualitative u Ses valeurs peuvent être des états, des opinions, des propriétés,... des modalités qui correspondent à des "qualités". On classe une unité statistique dans un groupe ou une catégorie. l Nominale: les groupes ne sont pas ordonnés l Ordinale: les groupes sont ordonnés

17 Variable quantitative u Ses valeurs sont des nombres réels et correspondent à des quantités. On distingue deux types de variables quantitative : l Discrète: les modalités sont dénombrables l Continue: les modalités sont définies sur un intervalle continu

18 Exemple Considérons le questionnaire suivant qui sadresse à la population étudiante de lÉTS. Q1.Avez-vous échoué ou abandonné au moins un cours à votre dernière session? 1. Oui 2. Non Q2.Combien de cours avez-vous réussi à votre dernière session? 1. 0 ou ou ou plus Q3.Combien de cours avez-vous réussi à votre dernière session? ____ Q4.Quelle est votre cote moyenne à lÉTS? _____

19 Exemple (suite) Q1. Avez-vous échoué ou abandonné au moins un cours à votre dernière session à temps complet? 1. Oui 2. Non Q2. Combien de cours avez-vous réussi à votre dernière session à temps complet? 1. 0 ou ou ou plus Q3. Combien de cours avez-vous réussi à votre dernière session à temps complet? ____ Q4. Quelle est votre cote moyenne à lÉTS? _____ NATUREMODALITÉS Qualitative nominale{ oui, non } Qualitative ordinale{ 1, 2, 3, 4 } Quantitative discrète{ 0, 1, 2, … } Quantitative continue[ 0 ; 4,3]

20 Variable quantitative discrète u Ses valeurs a priori sont des nombres isolés les uns des autres. u Image géométrique :

21 Variable quantitative continue u Ses valeurs a priori ne peuvent être isolées. u Les valeurs se situent donc dans des intervalles de la droite réelle. u Image géométrique :

22 Les variables en résumé

23 Échantillon u Les résultats des observations, portant sur la variable à l'étude, faites sur une partie des individus. (Une observation par individu) Taille de l'échantillon : le nombre d'orbservations dans l'échantillon. Notation : n

24 But d'une étude statistique u Se faire une idée assez juste des variations d'une variable dans une population.

25 Quelques fondateurs(1) Pierre de Fermat ( ) Abraham de Moivre ( ) Thomas Bayes (? ) Blaise Pascal ( ) Jacques Bernouilli ( )

26 Quelques fondateurs(2) Karl Friedrich Gauss ( ) Karl Pearson ( ) Ronald Fisher ( ) Francis Galton ( )

27 Représentation graphique Variable qualitative nominale (ou ordinale) Cours échouésEffectifsFréquences ou abandonnés OUI9519,0% NON40581,0% 5001 Avez-vous échoué ou abandonné au moins un cours à votre dernière session ? Effectifs

28 Représentation graphique Variable quantitative discrète Combien de cours avez-vous réussi à votre dernière session ? ____ Effectifs Nombre deEffectifs Fréquences cours réussis 0220, , , , , , ,000 Diagramme à bâtons Nombre de cours réussis

29 Représentation graphique Variable quantitative continue (1) Quelle est votre cote moyenne à lÉTS? _____ Effectifs Cote EffectifsFréquences (1,3 ; 1,5]50,010 (1,5 ; 1,7]40,008 (1,7 ; 1,9]80,016 (1,9 ; 2,1]280,056 (2,1 ; 2,3]320,064 (2,3 ; 2,5]650,130 (2,5 ; 2,7]720,144 (2,7 ; 2,9]800,160 (2,9 ; 3,1]810,162 (3,1 ; 3,3]510,102 (3,3 ; 3,5]350,070 (3,5 ; 3,7]230,046 (3,7 ; 3,9]120,024 (3,9 ; 4,1]20,004 (4,1 ; 4,3]20,

30 Représentation graphique Variable quantitative continue (2) CoteEffectifsFréquences Fréq. Cumulées (1,1 ; 1,3]000 (1,3 ; 1,5]50,01 (1,5 ; 1,7]40,0080,018 (1,7 ; 1,9]80,0160,034 (1,9 ; 2,1]280,0560,09 (2,1 ; 2,3]320,0640,154 (2,3 ; 2,5]650,130,284 (2,5 ; 2,7]720,1440,428 (2,7 ; 2,9]800,160,588 (2,9 ; 3,1]810,1620,75 (3,1 ; 3,3]510,1020,852 (3,3 ; 3,5]350,070,922 (3,5 ; 3,7]230,0460,968 (3,7 ; 3,9]120,0240,992 (3,9 ; 4,1]20,0040,996 (4,1 ; 4,3]20,0041 TOTAL5001


Télécharger ppt "Bienvenue au cours Mat 350 Probabilités et statistiques."

Présentations similaires


Annonces Google