La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Animation pédagogique Le Blanc Cycle 2 Dominique Verdenne Site IUFM Châteauroux.

Copies: 1
Animation pédagogique Cycle 2 Daprès Dominique Verdenne Site IUFM Châteauroux.

Présentations similaires


Présentation au sujet: "Animation pédagogique Le Blanc Cycle 2 Dominique Verdenne Site IUFM Châteauroux."— Transcription de la présentation:

1 Animation pédagogique Le Blanc Cycle 2 Dominique Verdenne Site IUFM Châteauroux

2 La boîte noire (1) Madame A: Trois objets dans la boîte: 1; 2; 3 Quatre objets dans la boîte: 1; 2; 3; 4 Combien? 1; 2; 3; 4; 5; 6; 7 Sept objets! = 7

3 La boîte noire (2) Madame B: Trois objets dans la boîte: 1; 2; 3 Quatre objets dans la boîte: 1; 2; 3; 4 Madame B ferme la boîte… Combien? …… On ouvre la boîte pour vérifier 1; 2; 3; 4; 5; 6; 7 Sept objets! = 7

4 La boîte noire Deux séquences qui semblent se ressembler…. Milieu matériel identique Milieux dapprentissage différents

5 Faire des mathématiques… cest résoudre des problèmes? Madame A: Pas de problème à résoudre Exécution dune simple tâche: dénombrer Une seule technique: recompter les objets de la boîte Les écrits répètent ce qui a été découvert

6 Faire des mathématiques… cest résoudre des problèmes! Madame B: Un problème est posé: nombre dobjets de la boîte? Les élèves ont la responsabilité de la résolution (du problème) Plusieurs techniques de résolution: recomptage surcomptage calcul réfléchi résultats mémorisés Les écrits: lieu de production du savoir un moment de modélisation Validation: retour vers le réel: ouverture de la boîte

7 Construire des situations denseignement pour des enjeux importants… Des connaissances sûres Des connaissances utilisables, en autonomie Une idée correcte de « faire des mathématiques »

8 Résoudre des problèmes au cœur des apprentissages Les connaissances ne sont pas transmises directement, ni acquises par imitation; Double finalité de la résolution de problèmes: Placer les élèves dans une situation où on ne peut pas répondre directement: il y a quelque chose de nouveau à apprendre Offrir aux élèves loccasion de participer à la construction de cette connaissance nouvelle

9 Résoudre des problèmes pour introduire une connaissance Il permet de remettre en cause ses anciennes connaissances: –prise en compte des obstacles, – remise en cause des conceptions erronées. Les élèves doivent pouvoir sengager facilement dans le problème (ne pas « rester muet »). Les connaissances doivent être insuffisantes ou peu économiques: le problème doit être consistant. La situation doit permettre de décider si la solution est convenable ou non. Les connaissances qui font lobjet de l apprentissage visé fournissent loutil le plus adapté pour obtenir la solution. La situation devient une situation de référence.

10 Analyse de manuels Analyse dun point de vue didactique: Côté élève: ce qui est à sa charge, ce qui est de sa responsabilité… Côté enseignant: que prend-il en charge? quand et comment? Rôle de lerreur Type dapprentissage (quelques mots)

11 Apprentissage de la numération Cest lapprentissage : des règles de fonctionnement de lécriture chiffrée des nombres la manière de dire ces nombres avec les mots. Elle sera utilisée –comme outil- pour: comparer les nombres calculer mesurer résoudre certains problèmes.

12 Quest –ce que le nombre ? Aspect objet

13 Construction du nombre: trois aspects importants Aspect algorithmique Aspect groupements Aspect échanges

14 Aspect algorithmique Mettre en évidence la manière dont fonctionne lécriture des nombres: en observant les régularités de la suite écrite, sans forcément donner du sens, dans un premier temps, à la signification de chacun des chiffres (en terme de groupements), Prendre conscience quavec DIX symboles, on peut construire la suite écrite aussi loin que lon veut.

15 Aspect algorithmique « Rien ne justifie une étude des nombres un par un. » « Les premières situations doivent demblée se situer dans un domaine relativement étendu. » « On acceptera donc de travailler avec des nombres que lenfant ne sait pas encore lire. » Documents dapplication, cycle2

16 Aspect algorithmique Produire des suites orales ou écrites Comparer des nombres Ranger des nombres Écrire des encadrements Situer -précisément ou approximativement- des nombres sur la droite graduée Travailler les désignations orales des nombres Documents dapplication

17 Aspect algorithmique Le tableau des nombres Jeu du château (CP) Support jeux du portrait Ermel CP

18 Aspect algorithmique Les jeux du portrait : Mobiliser les connaissances sur les nombres Gérer des informations positives et négatives Dire, lire, écrire en mathématiques Ermel CP

19 Aspect algorithmique

20 Comprendre la structuration de la suite écrite des nombres

21 Les jeux du portrait Est-ce quil se termine par un 8? OUI Est-ce que le chiffre du milieu est 3? OUI Si tu trouves le nombre, écris-les:………. Sinon, pose dautres questions:………… Est-ce quil se termine par un 3? OUI Est-ce que le chiffre des dizaines est 2? OUI Si tu trouves, donne le nombre: …… Sinon, pose dautres questions: ………..

22 Du dénombrement à la désignation écrite des quantités Pour faire le lien entre: laspect algorithmique de lécriture chiffrée le fait que cette même écriture désigne une quantité. Il sera nécessaire de faire apparaître la signification de la position du chiffre au sein du nombre (en terme de groupements par dix), doù Aspects groupements/ échanges

23 Aspect groupements Donner du sens aux notions « chiffre de » et « nombre de » Faciliter laccès aux décompositions variées par rapport aux puissances de 10 Donner diverses décompositions dun nombre en utilisant 10, 100, 1000 Retrouver rapidement lécriture chiffrée dun nombre à partir de sa décomposition

24 Aspect groupements Fourmillions Un problème est posé: Dénombrer une très grande collection : plus de 1000 (ou 2000) objets Émergence des questions Mise en place des procédures de groupements Production décritureS Ermel CE1

25 Aspect groupements Codage du nombre déléments de la collection Ermel CP 2357 Production décritures:lien addition numération 3 sacs de cent, 2 boîtes de mille, 7 pailles, 5 paquets de dix

26 Aspect groupements Fourmillion: Un même habillage mais une situation qui évolue… Activités de codage, de décodage Combien y a t-il de pailles ? (à partir dun dessin) Tu as 2637 pailles. Trouve au moins une façon décrire ton message.

27 Donner du sens au « 0 »

28 Vers le calcul …

29 Quelques remarques … 1000 nest pas vu comme étant: –le successeur de 999 –le prédécesseur de 1001 mais: –comme 10 paquets de nest pas vu comme étant: –le suivant de 99 –le prédécesseur de 101 mais: –comme 10 paquets de 10 –

30 Après fourmillions… Le lien groupement- algorithme Le compteur vivant Situation « carrelage »

31 Aspect échanges Donner du sens au rôle de chaque chiffre dans le nombre Prendre conscience quune unité dun rang n vaut 10 unités du rang n-1 Dix unités dun certain ordre deviennent une nouvelle unité (qui na pas la même valeur!) Dissocier « valeur » et « quantité » Réinvestissement dans les techniques opératoires, les nombres décimaux

32 Aspect échanges Les maisons à construire: Construire le plus possible de maisons complètes avec: un toit: un étage: un rez-de-chaussée:

33 Aspect échanges

34 Développer les règles déchanges fixes: « 2 contre 1 » et « 5 contre 1 » Interactions entre élèves: un banquier et deux joueurs Résolution de problèmes individuels: situations représentées Ermel CP

35 Aspect échanges Le jeu du banquier: « Qui a gagné? » –5 contre 1 –Comparaison des collections après échanges: distinction « valeur » et « quantité » –Passage à la représentation Le jeu du banquier –10 contre 1 –Vers la technique opératoire de laddition Différenciation possible!

36 Et après? Nécessité de poursuivre au cycle 3 avec des activités en continuité avec celles du cycle 2 pour construire: les techniques opératoires, létude des nombres décimaux, les fonctions numériques « multiplier / diviser par une puissance de dix » la mesure des grandeurs.

37 732,15 x 10 mcdu1/101/ , , 5

38 A propos de la manipulation… Il faut se convaincre que ce nest pas la manipulation dun matériel qui constitue lactivité mathématique…. …mais les questions quelle suggère. Il convient de distinguer les tâches de constat ou dobservation qui invitent lélève à lire une réponse sur le matériel… …des tâches danticipation qui lui demandent délaborer, de construire par lui-même une réponse dont il pourra vérifier la validité.

39 Gestion dun apprentissage Situation didactique Dévolution du problème Situation daction Situation de formulation Situation de validation Institutionnalisation Routinisation, familiarisation Evaluation Réinvestissement


Télécharger ppt "Animation pédagogique Le Blanc Cycle 2 Dominique Verdenne Site IUFM Châteauroux."

Présentations similaires


Annonces Google