La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

MACS 2 Sujet du cours = « Méthodes pour les ingénieurs » ou en vrai, comment ce quon fait dans la formation Macs est utilisé dans lindustrie !

Présentations similaires


Présentation au sujet: "MACS 2 Sujet du cours = « Méthodes pour les ingénieurs » ou en vrai, comment ce quon fait dans la formation Macs est utilisé dans lindustrie !"— Transcription de la présentation:

1 MACS 2 Sujet du cours = « Méthodes pour les ingénieurs » ou en vrai, comment ce quon fait dans la formation Macs est utilisé dans lindustrie !

2 Ma proposition Ce nest pas un cours conventionnel But = vous aider à vous orienter Test (dont vous êtes les 2 nd cobayes …) Séquences 1h30 avec : mn de questions du « prof » Exposé « classique » de 1h 10 mn de questions de « vous »

3 Plan du cours Analyse dun problème type le passage dun problème continu au problème discret ou comment modéliser comme un mathématicien appliqué Des exemples de problèmes multi-échelles et multi- physiques quest-ce que ça cache comme compétences ? Validation, recalage, méthodes inverses : ne pas se tromper de méthode et rester « scientifiques », sil vous plait ! Incertitudes ou le désespoir si on ne sais pas adopter une attitude un peu systématique La simulation dans le processus de conception : où ? avec qui ? Quels enjeux ? Quels gains ? + le contrôle des connaissances !!!

4 le contrôle des connaissances !!! Dernière séance du –Tirage au sort le –Groupe de 3 –Un sujet / 7 à 8 mn par groupe –Notation A-E Questions ?

5 Première question : la modélisation numérique : quelles questions faut-il poser ? Exemple : un métier « nouveau » la compatibilité électromagnétique de quelles informations un « mathématicien appliqué » va t-il avoir besoin pour entrer en action ?

6 Conclusion 1 Identifier les grandeurs caractéristiques Identifier les équations ET les conditions aux limites et les conditions initiales Comprendre les simplifications des ingénieurs et « mesure la complexité du problème » Faire appel aux labos sur les problèmes théoriques (bien posé, dans quels espaces donc quelle régularité est attendue) Choisir la méthode numérique ad hoc Létudier !!!! (si possible)

7 Seconde question : erreur numérique et erreur de modèle ? il faudrait savoir !!! Exemple : propagation dondes et propagation derreurs ou comment fait- on la différence ? un « mathématicien appliqué » essaie danalyser le pb continu et le pb discret

8 Conclusion 2 Comprendre quels sont les invariants physiques (demander aux experts !!!) Comprendre les schémas et surtout leur interprétation physique (conservation dénergie, de qtté de mvt, contraintes de causalité, de positivité, de réversibilité … étudier (si possible) lexistence des invariants « numérique » (en plus de lordre des schémas » Avoir conscience du coût du schéma choisi (à développer, en temps CPU) : aucun code non « raisonnable » ne sera retenu par un ingénieur La précision se juge « sur le résultat final » pour un ingénieur !

9 troisième question : une approximation contient toujours une idée defficacité qui doit être analysée Exemple : Un développement asymptotique, une valeur moyenne … un « mathématicien appliqué » doit comprendre quels paramètres sont pertinents

10 Conclusion 3 Comprendre quels sont les principes physiques qui ont permis de développer ces modèles (trouver les observables pertinents selon ces experts) Analyser mathématiquement les modèles est toujours payant (pas souvent facile !) La détermination des domaines de validité des modèles demande des expérimentations nouvelles ! Lhybridation de méthodes est classiquement la réponse « ingénieur » à certaines approches multi échelles

11 quatrième question : un « vrai » problème a toujours une composante multi-échelle cachée Exemple : turbulence, lois de comportement de matériaux homogénéisés, propagation dans des milieux barbares un « mathématicien appliqué » essaie de formuler les passages déchelles de façon « variationnelle »

12 Conclusion 4 Comprendre quels sont les principes physiques sous entendus (demander aux experts quelles sont les raisons « vraies » des modèles équivalents quils utilisent !!!) Séparer modèle physique et discrétisation … Savoir que les schémas numériques sont « susceptibles » et que les propriétés de stabilité et convergence sont souvent impossible à démontrer (faire beaucoup dexpérimentation numérique avant de livrer le code sous peine de se faire mal voir ! La pertinence se juge sur le « comportement » final du modèle à plusieurs niveaux pour un (bon) ingénieur !

13 Cinquième question : Validez : il en restera bien quelque chose ! Validez oui mais quoi ? un « mathématicien appliqué » valide : –Le code de calcul par petits morceaux – le schéma numérique pour chaque morceau –Le sous modèle via un domaine de validité –Et laisse linterprétation physique aux experts du domaine dapplication

14 Conclusion 5 Exhiber des solutions analytiques si elles existent mais bien comprendre ce quelles amènent (et on peut être déçu ou surpris) Ne pas se tromper dobservable !!!! Demander à aller voir (et participer) aux mesures : cest le seul moyen de comprendre ce qui a vraiment été mesuré ! Cest le moyen dintroduire les méthodes inverses Séparer modèle physique et discrétisation : encore et toujours …Faire converger les schémas numériques est un but louable mais la réalité est dure à vivre! La pertinence se juge sur le « comportement » final du modèle à plusieurs niveaux pour un (bon) ingénieur ! Vous êtes en charges de la partie numérique, pas de la réalité industrielle : la validité du modèle est un travail collectif (proche de la conviction !!!) Le point clé est la qualité de la donnée (pas le code !!!)

15 sixième question : méthodes inverses et optimisation : pourquoi faire ? Quels principes derrière une méthode inverse ? un « mathématicien appliqué » peut utiliser une approche inverse si : –il est « sûr » de son modèle direct (voir « validation » –Il doute des données dentrées qui lui sont proposées –Il y a un « expert » dans le voisinage!

16 Conclusion 6 Le point clé est la qualité de la donnée (pas le code !!!) Un pb inverse dans la vie réelle est toujours mal posé (non existence et non unicité! Parce que les données sont trop pauvres en général) mais ça nempêche pas de tenter des choses ! Contrôle optimal et méthodes de gradient si on dispose dune expertise pour choisir un point de départ : cest un « must » (faut donc causer avec les experts !!!) Fabriquer des données « synthétiques » sert à tester la sensibilité aux données, donc la robustesse : cest obligatoire si on ne veut pas être ridicule … Traiter les données de mesures sera nécessaire (et pas facile !) Une optimisation relève des mêmes techniques (mais là, la solution devra être critiquée encore plus !) Combiner algo génétique, recuit simulé …. avec des méthodes de descentes est souvent utilisé pour éviter des minimas locaux On commence à trouver des outils de « dérivation automatique » et de construction automatique de lopérateur adjoint

17 Septième question: un « vrai » problème a toujours une composante « incertaine » cachée Exemples : à vous un « mathématicien appliqué » essaie de formuler les incertitudes selon une méthodologie systématique

18 Conclusion 7 La propagation dincertitudes peut se faire de plusieurs façons (intrusive, non intrusive) Le point dur, cest de classer les incertitudes La méconnaissance nest pas rédhibitoire, loin de là! Penser moyenne et écart type, ce nest pas pareil que de courir après les valeurs extrêmes Inclure la gestion des incertitudes est fondamentale pour le futur de la simulation Le mode de pensées « probabilités » est le point clé de la certification par le numérique : analyse de risques alimentée partiellement par les calculs Corollaire: les modèles doivent être validés de façon « probabiliste »

19 huitième question : un « vrai » problème a toujours une composante multi-Physique cachée Exemples : à vous un « mathématicien appliqué » essaie de formuler les couplages que lui proposent les physiciens en termes de Conditions aux limites, de formulations variationnelles …

20 Conclusion 8 Couplages faibles / couplages forts : le mieux est lennemi du bien ; il vaut mieux avoir des bons experts dans le voisinage … Les besoins dans lindustrie sont énormes !!! Mais tout ne se couple pas avec tout. Les entreprises ne sont pas actuellement structurées pour aborder les aspects multidisciplinaires de manière efficace ; certaines techniques mathématiques vont grandir avec ces besoins qui explosent La formulation de couplages est souvent exprimée indirectement (ex: il faut projeter un maillage sur un autre…) : ça cache une formulation mathématique : à vous de jouer Convergences, stabilité, validation sont bien plus difficiles à appréhender : le métier est en train de se faire … avec vous!

21 neuvième question : mais qui utilise la simulation numérique dans lentreprise ? Qui, quand, où, pourquoi, comment ? ou, pour résumer, connaissez-vous le « cycle en V »? Pourquoi la Macs est-elle une formation formidable ? (si, si !)

22 Conclusion 9 1.Simuler : cest un métier Formation de la nouvelle génération Gestion de carrières (experts en modélisation ?) 2.Simulation / essais (plus riche et moins cher, pas moins !) Diminue les cycles = gain immédiat Incontournable pour lintégration ( maturité du produit) Exploration amont par simulation devient pertinente (différentiant) 3.Le couple conception-simulation est à réaffirmer Modélisation et technologie doivent être accrochés La modélisation = niveau TRL dune technologie ? 4.Rendre la simulation abordable Efficacité = industrialisation = plateformes (Puis) = moyens HPC 5.Industrialisation = spécifique à chacun Normes déchange Politique fournisseur


Télécharger ppt "MACS 2 Sujet du cours = « Méthodes pour les ingénieurs » ou en vrai, comment ce quon fait dans la formation Macs est utilisé dans lindustrie !"

Présentations similaires


Annonces Google