La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

LA CONSTRUCTION DU NOMBRE Développement qui fait suite à la conférence de Michel VINAIS du 17.11.2010 Catherine WAECKEL-DUNOYER.

Présentations similaires


Présentation au sujet: "LA CONSTRUCTION DU NOMBRE Développement qui fait suite à la conférence de Michel VINAIS du 17.11.2010 Catherine WAECKEL-DUNOYER."— Transcription de la présentation:

1 LA CONSTRUCTION DU NOMBRE Développement qui fait suite à la conférence de Michel VINAIS du Catherine WAECKEL-DUNOYER

2 La numération (ordinalité) 1 Cadrage 2 Progression LeS PROCedures de quantification (cardinalité) 3 Cadrage 4 Progression

3 1 La numération : cadrage 1.1/ Les 2+1 systèmes de numération 1.2/ La chaîne numérique verbale et ses 4 niveaux délaboration 1.3/ La chaîne insécable et ses 3 zones différentes 1.4/ Les préalables à la construction des données numériques : quelques repères, le mur du 4, le zéro, les activités logico-mathématiques.

4 1.1 / Les 2 systèmes de numération écrite totalement différents Numération motNumération chiffre Nb de symboles25 mots 10 chiffres Algorithme Non algorithmique Parfait et constant Répétitif et récursif (période qui évolue suivant un paramètre) Base Pas de base Base 10 Le zéro Pas doralisation Systématique et fondamental Valeur positionnelle Suite de mot nombre donne souvent un nombre : ex : Quatre vingt six Mais ce nest pas forcément le cas : ex : Trente douze Suite de chiffre = 1 nombre dans tous les cas Ordre de grandeur Nombre de mots sans lien avec la grandeur Nombre de chiffres en lien avec la grandeur Danger : ne pas appuyer la numération chiffre sur la numération mot.

5 +1 système numérique oral correspondant aux 2 systèmes écrits La chaîne numérique verbale Système qui a deux signifiants symboliques « 5 » et « cinq » Pour un même signifié oral [sink] Et un même signifié quantité XXXXX Attention aux appels que lon fait dun système à lautre ! Attention bien identifier cardinalité ou ordinalité : la construction de la chaîne est uniquement dans lordinalité, les problèmes mettent en œuvre la cardinalité. Danger : les premiers nombres sont les chiffres-nombres : attention au vocabulaire employé !

6

7 1.2 / La chaîne numérique verbale et ses 4 niveaux délaboration La chaîne chapelet (avant 3 ans) Un savoir par cœur inutilisable, un groupe de souffle monobloc, sans représentation mathématique « Undeuxtroisquatrecinq » La chaîne insécable (maternelle) Chaîne dont la segmentation et sa liaison aux quantités sont conscientes mais quon ne peut pas encore dissocier. Lélève est toujours obligé de repartir de 1 (au moins en parlant doucement) « Un deux trois quatre cinq… » La chaîne sécable (maternelle) Cest quand lenfant peut établir des liaison numériques à partir de nimporte quel nombre de cette chaîne, dans sa zone stable et exacte. La chaîne terminale (ou dénombrable) (fin GS/CP/CE1) Chaîne totalement malléable et complètement automatisée : elle est utilisable dans tous les sens, il ny a plus de problèmes pour circuler dans cette chaîne.

8 zone stable et exacte : revient dans plus de 80% de ses énonciations. zone stable inexacte : revient dans plus de 80% de ses énonciations mais elle est non conventionnelle et peut même avoir des retour. Il peut y avoir des reprises de la chaîne connue. zone non stable et inexacte : lélève prouve au moins quil sait que ça continue, mais il ne sait pas comment. Lapprentissage se fait par imprégnation et mémorisation. Lhétérogénéité la favorise. Attention les passages à la dizaines sont à donner régulièrement aux élèves : pas à construire mais à savoir. Toutes les activités de dénombrement et de problème quon va mener doivent se situer dans la zone stable et exacte. 1.3/

9 1.4 / Les préalables à la construction des données numériques Quelques repères Le mur du 4 Le zéro Les activités logico-mathématiques

10 Quelques repères On ne parle pas de chaîne numérique avant le 4, lorsque lenfant a passé le « mur du 4 ». Lacquisition de la chaîne numérique verbale sétale sur 4 années. Lapprentissage doit être mémoriel, il ny a pas de logique dans les noms des chiffres. On sappuie sur les savoirs spontanés de lenfant : les nombres sont des mots pour compter. En maternelle on doit sattacher à donner du sens à loutil nombre. Après, on travaillera sur lobjet nombre et lalgorithme de sa symbolique.

11 Le mur du 4 Difficulté pour enclencher la chaîne numérique : passer le « mur du 4 » Rupture à 4 car le 3 a une valeur affective qui viendrait perturber la chaîne. Redonner à 3 une valeur purement numérique. Activités : - Utiliser le corporel en lien avec ladulte pour coordonner et rassurer. Ex: marcher en disant, montrer les doigts… - Associer ce bout de chaîne au pointage de trois objets identiques alignés régulièrement sur une table. Ce nest pas du dénombrement cest un début de segmentation.

12 Le zéro Le zéro nest pas intuitif : domaine de lacquisition et de lapprentissage. Il y a 3 zéros différents. - le zéro chiffre (symbole) « rien », - le zéro nombre « Il ny en a plus » « Comptage à rebours » - le zéro origine (mesure : invisible en maternelle) En maternelle on manipule les zéros, on les utilise dans laction donner du sens à ce nombre : essentiel pour un bon apprentissage Différentes expressions pour le désigner. Dautres représentations de zéro (en parallèle aux représentations utilisées pour 1, 2, 3) un domino vierge, un sac vide, une main fermée, etc… (Attention aux représentations choisies. Les enfants sont dans le principe de réalité : un panier, même vide, reste un panier donc = 1 = une unité) L'introduction du chiffre/symbole se fait alors au même titre que pour 1, 2, 3... En particulier, il n'y a pas lieu de distinguer deux files numériques séparées, mais on ne se presse pas de le représenter. Le zéro ne fera vraiment sens, ne sera conceptualisé, quavec la soustraction.

13 Les activités logico-mathématiques La logique est nécessaire à la construction du nombre La classification : dabord les classes schématiques (même espace : ex : tous les objets de la cuisine) puis les classes taxonomiques (propriétés) qui permettent davancer vers la cardinalité. Ce sont des relations déquivalence. La sériation : (ex : du plus petit au plus grand, du plus clair au plus foncé) Ce sont des relations dordre qui permettent davancer vers lordinalité. Les algorithmes : ils sont primordiaux à lécole maternelle : ils construisent lopératoire. Or, les apprentissages numériques sont construits sur des lois. - A la maternelle on travaille déjà les algorithmes répétitifs dans cet ordre : binaire, quaternaire et ensuite seulement, ternaire. - Puis plus tard, les algorithmes récursifs : on fait évoluer la période sur un paramètre. Attention à lévaluation des algorithmes : lenfant est opératoire quand la période est isolée et mémorisée. Or, sur papier, il peut se contenter de comparer avec ce qui est déjà fait, il ne sera véritablement opératoire que sil ne regarde pas ce qui est avant. Approche institutionnelle : Les IO de 85 et 95 esquissent bien les contours du logico-mathématiques. Ils existent encore en 2008 mais sont moins explicites.

14 2 La numération : progression 2.1/ De la chaîne chapelet à la chaîne insécable 2.2/ La chaîne insécable 2.3/ La chaîne sécable 2.4/ La chaîne terminale 2.5/ Mise en œuvre

15 2.1/ De la chaîne chapelet à la chaîne insécable ObjectifActivités Faire entrer dans la chaîne insécable. Normalement acquis à 3 ans, en PS. Compter à deux (adulte/enfant), frapper entre les « dire », mettre un mot entre les nombres Utiliser le corps pour faire ralentir et coordonner : compter ses pas, ses sauts dans des cerceaux, sur une marelle, ses mouvements répétés… Associer le début de chaîne au pointage de trois puis quatre objets identiques (alignés régulièrement car lirrégularité perturbe lenchaînement logique)

16 2.2/ La chaîne insécable CompétencesActivités Augmenter sa zone de stabilité puis son exactitude Progressivement, par des exercices de mémorisation, dimprégnation, de répétition et avec le support des comptines. Augmenter sa conscience mathématique et la segmentation. Attention, ce travail ne seffectue que sur la zone stable et exacte de lélève. « Montre-moi jusquoù tu sais compter. » Lélève commence par un groupe de souffle ( sur sa zone stable et exacte) puis il égrène les nombres suivants. En les donnant, il fait de la segmentation. On essaie de lui faire redire lentement le début de la chaîne pour reproduire cette segmentation orale. Dire un nombre fort et un doucement. Puis dire un fort et taire le suivant (le dire dans sa tête). Frapper des mains à chaque nombre. Mais attention au problème de coordination. On compte à 2 : adulte / enfant. Avec rythme régulier, puis irrégulier. Puis avec un pair = obliger le sujet à tenir compte du discours de lautre. Attention, régulation de ladulte nécessaire. Intercaler un mot dans la chaîne : 1 bonbon, 2 bonbons, 3 bonbons… Passer par le corps : compter cest faire des pas de 1 = cest marcher. Compter ses pas pour aller à un endroit. La mesure nimporte pas. Compter en sautant dans les cerceaux.

17 2.2/ La chaîne insécable Compétences / CapacitésActivités Capacité à compter jusquà n : 1 mémoriser le nombre borne 2 faire remonter la chaîne numérique de la mémoire à long terme à la mémoire de travail : la dire 3 comparer au nombre borne chaque nombre énoncé Problème cognitif. Il faut laider en lui faisant faire ce travail en regardant la frise numérique et peu à peu le contraindre à sen passer : « Regarde-moi pendant que tu comptes. » Capacité à livrer le successeur dun nombre émerge de la capacité précédente Comme il ne peut pas encore partir de 5, par exemple (car chaîne insécable) il a besoin de réciter la chaîne depuis 1, de sarrêter à 5 et de réciter 6. Associer le « mot-nombre oral » à son écriture chiffrée ou inversement. Réciter la chaîne numérique en suivant la frise numérique écrite : faire de la lecture au doigt : cela permet de poser la récitation orale. Capacité à activer les premières procédures de quantification par comptage Les premiers problèmes de mathématiques (combien y a-t-il de canards sur limage ? )

18 2.3/ La chaîne sécable Compétences / CapacitésActivités Compter à partir de x Compter de x à y Compter par bond : de 2 en 2, sur les pairs et les impairs… Compter à rebours Livrer le prédécesseur dun nombre Utiliser la frise numérique affichée pour soutenir visuellement, structurellement, le savoir. On len détache progressivement. La frise numérique affichée : il faut faire des ruptures et ne pas toujours la représenter de façon linéaire continue pour ne pas scléroser lapprentissage autour dune représentation. Tout savoir canonique doit être cassé pour devenir permanent. On peut la présenter verticale ou en ligne courbe par exemple.

19

20 2.4/ La chaîne terminale Compétences / CapacitésActivités Capacité à circuler librement dans cette chaîne. Elle est totalement malléable et complètement automatisée. Karen Fuson dit que ce nest quau niveau de la chaîne terminale que les nombres peuvent être « le produit dun dénombrement. » : quon peut dénombrer des objets qui sont eux-mêmes des nombres. Ex compter des jetons de lotos sur lesquels sont inscrits des nombres. Le perceptif vient perturber lopératoire, il faut inhiber ce quon voit pour compter. Amener à une maîtrise complète de la chaîne numérique (objectif majeur). Meilleures performances en calcul mental grâce à la gymnastique mentale au niveau de lacquisition de la chaîne numérique Le comptage par bond se développe : de 2 en 2, de 3 en 3… Impératif à faire sur tout le cycleII, avec du pair et de limpair.

21 2.5/ Mise en œuvre Attention : Travailler sur la zone stable et exacte de chaque élève (grille) différenciation Vécu représenté dit conçu Alerte sur lutilisation des fichiers. Fichiers = danger. 2 approches complémentaires : la chaîne numérique comme objet dapprentissage : travaillée pour elle-même lors de séquences dapprentissage spécifiques « mathématiques», la chaîne numérique comme outil lors de divers comptages réalisés au cours du déroulement de la vie de la classe et permettant limprégnation pour faciliter la mémorisation. Toutes ces activités demandent beaucoup de concentration et de la mémorisation donc à faire souvent dans la journée mais pas longtemps : 4 fois 10 minutes et faire passer quelques enfants à la fois. Attention : passage au CP il faut prendre les enfants où ils en sont, chacun. On démarre souvent comme sils en étaient tous à la chaîne sécable or cest faux.

22 3 LeS PROCedures de quantification : cadrage ProcédureDéfinitionRemarque Le subitizing ou aperception globale Capacité à reconnaître la quantité sans comptage. Ce sont des images mentales qui se construisent par expériences successives. Le dénombrement ou le comptage Procédure de base permettant dévaluer de manière précise des collections…(dont la taille importe peu). A TRAVAILLER Lestimation globale Procédure de base permettant dévaluer par aperception sans dénombrement. Construire lordre de grandeur. Pas de systématique à développer en maternelle mais pas inintéressant à faire dans la vie de classe sur des objets. Autres stratégies de groupements et dopérations Plus la collection est importante et plus la difficulté est grande et plus on développe dautres stratégies que le comptage. Ex : le sur-comptage et laddition qui commencent en maternelle. Puis plus tard, la multiplication. La correspondance terme à terme Procédure méthodique permettant de comparer deux collections sans les dénombrer. Elle doit être travaillée aussi, elle nest pas spontanée.

23 4 LeS PROCedures de quantification : progression 4.1/ Le subitizing 4.2/ Le dénombrement ou le comptage 4.3/ Progressivité du dénombrement 4.4/ Linvariance du nombre 4.5/ Les symboles (chiffres)

24 4.1/ Le subitizing Configurations non figuratives : on ne va pas au-delà de 4. Configurations figuratives : constellations du dé, organisées spatialement, orientées ou non les doubles des dominos Les cartes à jouer Ce sont des images mentales, elles ne se travaillent pas. Ce serait forcer les capacités mentales dun sujet. Mais il faut beaucoup les manipuler car ces images mentales aident à la construction des nombres. On joue avec des dés vierges sur lesquels on dessine plusieurs fois la constellation en apprentissage.

25

26 4.2/Le dénombrement ou le comptage Compétences / CapacitésActivités Coordonner le geste, lœil et la parole. Domaine cognitif. Ladulte prend en charge une partie de la tâche : « Tu montres et je dis » puis linverse. Il sagit de freiner. Compter en faisant déplacer les objets pour ralentir le débit oral et synchroniser. Déplacer mentalement la frontière entre les objets déjà comptés et ceux qui ny sont pas encore. On fait dabord déplacer physiquement les objets. On ne travaille surtout pas sur fiche. Il faut créer cette frontière : objets à déplacer, à mettre dans la boîte… Lélève qui a acquis cette capacité à « séparer » pourra alors seulement développer des stratégies sur fiche en barrant ou entourant les objets comptés. Se déplacer sur une piste de jeux avec les points du dé : les petits chevaux, jeu de loie… Donner le dernier mot-nombre cité comme le cardinal de la collection (Cest une convention : double statut du dernier : le dernier objet et la totalité de la collection). => passage à une abstraction supérieure Lors de comptages divers : marquer la bande numérique avec la pince à linge sur le dernier nombre donné. On peut changer la tonalité de ce dernier mot nombre quand on compte, il faut aider à sentir ce statut spécial. Convention => confiance dans ladulte. Attention : Travailler sur la zone stable et exacte de chaque élève (grille) différenciation Vécu (manipulé) représenté dit conçu

27 4.3/ Progressivité du dénombrement

28 Toujours commencer par disposition spatiale aidante : la ligne (disposition canonique)

29 Progressivement, il faut casser cette disposition pour quelle devienne un concept : la colonne, loblique, la combinaison de plusieurs dispositions.

30 On peut faire varier le sens de dénombrement pour installer la notion de conservation du nombre, mais on ne la travaille pas précisément. Elle viendra avec le « autant ».

31 Progressivement varier la nature des objets : collection dobjets différents, collections hétérogènes par la couleur, collections hétérogènes par la taille Aide : ladulte donne lattribut commun qui permet de compter ensemble. Varier lorganisation de lespace.

32 4.4/ LINVARIANCE DU NOMBRE Conservation du nombre = savoir que le changement de disposition ou de lespace occupé par la collection ne modifie pas le cardinal. Savoir que lordre de dénombrement ninflue pas sur le cardinal. Travaux de Pierre GRECO : linvariance du nombre nest pas utile au numérique immédiatement : au CE2 encore beaucoup denfants ne sont pas « conservants » mais ça ne les gêne pas dans leurs apprentissages. En effet, le nombre porte deux valeurs : la quotité et la quantité. -La quotité cest la capacité à répondre à « Combien ? ». Cest ce concept premier qui est actif. -La conservation ne concerne que la quantité, elle est moins souvent activée : cest la capacité à dire sil y en a « autant ». Quand on travaille le numérique, on favorise laccès à la conservation mais celle-ci ayant plutôt rapport avec le développemental des images mentales, elle ne se travaille pas directement, il faut attendre que le sujet soit apte à lintégrer.

33 4.5/ Les symboles (chiffres) Associer le « mot-nombre oral » à son écriture chiffrée et à la quantité désignée. Apprentissage de la symbolique écrite. Elle se fait en graphisme, lors des mêmes séances que les lettres. Tenter déviter les inversions daxe vertical. A ce jour, personne ne sait remédier aux inversions de chiffre, même les orthophonistes. Elles disparaissent souvent sans quon sache comment. Linversion est toujours daxe vertical. Question dorientation spatiale. On peut prévenir en donnant limage mentale de la symbolique : Donner des étiquettes pour la zone stable et exacte Laisser la bande de référence toujours sur la table, au-dessus de sa ligne décriture (pas à côté) Faire travailler par imprégnation et éloigner progressivement le travail du modèle : la bande est en haut de la table, les étiquettes sont à mettre en bas de la table.


Télécharger ppt "LA CONSTRUCTION DU NOMBRE Développement qui fait suite à la conférence de Michel VINAIS du 17.11.2010 Catherine WAECKEL-DUNOYER."

Présentations similaires


Annonces Google