La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Mise en forme en Mathématiques 1e partie: Les quatre opérations 1) La loi des signes 2) Les fractions 3) Priorité des opérations.

Présentations similaires


Présentation au sujet: "Mise en forme en Mathématiques 1e partie: Les quatre opérations 1) La loi des signes 2) Les fractions 3) Priorité des opérations."— Transcription de la présentation:

1

2 Mise en forme en Mathématiques

3 1e partie: Les quatre opérations 1) La loi des signes 2) Les fractions 3) Priorité des opérations

4 Les 4 opérations La loi des signes Addition et soustraction Lorsqu’on additionne deux nombres de signes semblables, deux positifs ou deux négatifs, on additionne les nombres et le signe de la réponse est le même que celui des nombres calculés. Lorsqu’on additionne deux nombres de signes contraires, on soustrait les nombres et le signe de la réponse est celui du plus grand nombre en valeur absolue. (-2) + (-5) = = = = -2

5 Les 4 opérations La loi des signes Multiplication et division Lorsqu’on multiplie ou divise deux nombres de signes semblables, deux positifs ou deux négatifs, le signe de la réponse sera toujours positif. Lorsqu’on multiplie ou divise deux nombres de signes contraires, le signe de la réponse sera toujours négatif. (-2) x (-5) = 10 2 x 5 = x 7 = x (-7) = -35

6 Exercices La loi des signes Effectuer les calculs suivants (prenez une feuille et un crayon pour garder en mémoire vos réponses): = ? = ? = ? = ? 8 + (-2) = ? -3 - (-5) = ? 7 + (-3) = ? 6 x (-6) = ? 7 x 5 = ? (-4) x (-8) = ? 12 x (-7) = ? 72 ÷ (-9) = ? (-54) ÷ (-6) = ? 42 ÷ 3 = ?

7 Corrigé La loi des signes = = = = (-2) = (-5) = (-3) = 4 6 x (-6) = x 5 = 35 (-4) x (-8) = x (-7) = ÷ (-9) = -8 (-54) ÷ (-6) = 9 42 ÷ 3 = 14

8 Les 4 opérations Les fractions 1/15 +1/10 + 1/ Méthode des facteurs premiers Construction du dénominateur commun (on prend chaque chiffre de la colonne de droite de chaque tableau sans le répéter lorsqu’il est dans deux tableaux différents.) 2x2x3x5=60   Méthode pour trouvez le dénominateur commun  12

9 Les 4 opérations Les fractions Addition et soustraction de fraction Pour additionner ou soustraire les fractions, elles doivent avoir le même dénominateur (dénominateur commun) et on applique l’opération sur les numérateurs seulement.dénominateur commun = = 39 ou

10 Exercices Les fractions Effectuer les calculs suivants (prenez une feuille et un crayon): -3/4 + 9/4 = ? -4/5 - 5/3 = ? 9/11 + 4/3 = ? -7/8 + 2/3 = ?

11 Corrigé -3/4 + 9/4 = 6/4 = 3/2 -4/5 - 5/3 = -37/15 ou -2 7 / 15 9/11 + 4/3 = 71/33 ou 2 5 / 33 -7/8 + 2/3 = -5/24 Les fractions

12 Les 4 opérations Les fractions Multiplication Pour multiplier les fractions, il suffit de multiplier les numérateurs ensemble, et les dénominateurs ensemble. Et on simplifie la fraction résultante. Si les fractions sont nombreuses et/ou avec des grands nombres, nous pouvons simplifier avant de multiplier. 3/4 x 7/5 = 8 x 27 x 5= x 1 x 5 = x 7 = x 27 x 5= x 27 x 5= x 27 x 5=

13 Les 4 opérations Les fractions Division Pour diviser les fractions, il suffit d ’inverser le diviseur, c ’est-à-dire la deuxième fraction, et de multiplier les fractions. simplifier avant de multiplier. Exemple: 4545 On inverse 7373 ÷ 3737 = x On multiplie

14 Exercices Les fractions Effectuer les opérations suivantes:(prenez une feuille et un crayon): 5/7 x 14/3 = ? 7/4 x 6/7 = ? 9/7 ÷ 5/3 = ? 5/12 ÷ 10/3 = ?

15 Les fractions Corrigé 5/7 x 14/3 = 10/3 ou 3 1 / 3 7/4 x 6/7 = 3/2 ou 1 1 / 2 9/7 ÷ 5/3 = 27/35 5/12 ÷ 10/3 = 1/8

16 Les 4 opérations Priorité des opérations 1) On effectue les parenthèses en premier lieu. 2) On effectue les multiplications et les divisions en second lieu. Si ces opérations se succèdent, on suit l’ordre d ’apparition de gauche à droite. 3) On finit les calculs avec les additions et les soustractions de gauche à droite.

17 Les 4 opérations Priorité des opérations Exemple: 5 + [(3 +- 5)(5 - 3 x 4) - 4] Parenthèses Il y a plusieurs opérations à l’intérieur de la parenthèse, Il faut donc commencer par les petites parenthèses 5 + [ (-2) (5 - 3 x 4) - 4] Dans cette parenthèse, la multiplication est prioritaire sur la soustraction 5 + [ (-2) (5 - 12) - 4] 5 + [ (-2) (-7) - 4] Entre deux parenthèses l’absence d’opérateur indique la multiplication 5 + [ ] 5 + [ 10 ] =15

18 Exercices Priorité d’opérations Effectuer les calculs suivants:(prenez une feuille et un crayon): ÷ (3 - 6) = ? x 4 ÷ (14 ÷ 7) = ?

19 Corrigé Priorité d’opérations ÷ (3 - 6) = x 4 ÷ (14 ÷ 7) = 24

20 2e partie: Les nombres 1) Ensemble de nombres: N Z Q R 2) Fractions, fractions équivalentes, expression et nombre fractionnaire 3) Nombre décimal % fraction 4) Nombres pairs, impairs, premiers et multiples 5) Divisibilité des nombres

21 Les nombres Ensemble de nombres: N, Z, Q, R R Z N Q ,  5 5 -3,14159 N : nombres naturels Z :nombres entiers Q : nombres rationnels (fractions) R : nombres réels

22 Les nombres La fraction et sa famille Définition Sens général: La fraction est la partie d’un tout, une portion. Sens mathématique: Notation d’un nombre rationnel sous la forme a/b, ce nombre étant le résultat d’une division de a (numérateur) par b(dénominateur), a et b étant des nombres entiers.

23 Les nombres La fraction et sa famille Les fractions équivalentes sont deux fractions composées d’entiers différents mais qui représentent la même portion. Elles sont égales. Les fractions équivalentes Par exemple: 3/4 12/16

24 Les nombres La fraction et sa famille Les fractions équivalentes Pour trouver une fraction équivalente, il s’agit de multiplier ou de diviser le numérateur et le dénominateur par le même facteur. Exemple: 2 x 4 = facteur Fraction équivalente

25 Exercices Fractions équivalentes Compléter les fractions équivalentes suivantes: 3 = 9 5 = 20 8 = ? 4 ? 7 ? 6 3

26 Corrigé Fractions équivalentes 3 = 9 5 = 20 8 =

27 Les nombres La fraction et sa famille Les fractions équivalentes et proportion Lorsque deux fractions sont équivalentes, nous obtenons une proportion. En appliquant la loi des proportions, nous pouvons vérifier si deux fractions sont équivalentes. La loi des proportions Le produit des extrêmes = Le produit des moyens Exemple: 3 = 12 sont deux fractions équivalentes Elles forment donc une proportion. 3 x 16 = 4 x 12 donne 48 = 48

28 Exercices Proportion Vérifier avec la loi des proportions si les fractions sont équivalentes. A) 2 = 24 B) 9 = C) 7 = 5 D) 1 =

29 Corrigé Proportion 1. Oui 2. Non 3. Non 4. Oui

30 Les nombres La fraction et sa famille L’expression et le nombre fractionnaire •Lorsque le numérateur égale le dénominateur, comme dans 4/4, nous obtenons un entier. •Si le numérateur dépasse la valeur du dénominateur, comme dans 5/4, nous avons plus qu’un entier. Nous appelons cette fraction une expression fractionnaire. •Nous pouvons aussi transformer cette expression en nombre fractionnaire pour faire apparaître le nombre d’entier qu’elle contient. Elle devient 1 ¼. Pour ce faire, il s’agit de diviser le numérateur par le dénominateur.

31 Exercices Nombre fractionnaire Transformer les expressions en nombres fractionnaires et vice versa / 5 = ? / 5 = ? 3. 7 / 5 = ? / 3 = ?

32 Corrigé Nombre fractionnaire / / / / 3

33 Les nombres Nombre décimal % fraction Pour transformer une fraction en décimale, on divise le numérateur par le dénominateur. 3/4 = 3 ÷ 4 = 0,75 Pour transformer une décimale en fraction, on amène la partie décimale sur un dénominateur puissance de 10 selon le nombre de chiffres composant la décimale, et on simplifie la fraction ainsi obtenue. 0,75 = 75/100 = 3/4 Pour transformer une décimale en pourcentage, on multiplie la décimale par ,75 x 100 = 75%

34 Les nombres Nombre décimal % fraction Pour transformer un pourcentage en décimale, on divise la valeur par % = 75 ÷ 100 = 0,75 Pour transformer un pourcentage en fraction, on met la valeur sur 100. Si une décimale persiste dans la valeur, on multiplie la fraction par une puissance de 10 afin d ’obtenir que des nombres entiers au sein de la fraction. On simplifie par la suite. 37,5% = 37,5/100 x 10/10 = 375/1000 = 3/8 Pour transformer une fraction en pourcentage, on divise le numérateur par le dénominateur et multiplie le quotient par /8 = 3 ÷ 8 = 0,375 x 100 = 37,5%

35 Exercices Transformation Effectuer les transformations appropriées. Fraction%Décimale 3/8 33 1/3 % 0,3 1/25 1/2 % 1,45

36 Corrigé Transformation Fraction%Décimale 3/8 33 1/3 % 0,3 1/25 1/2 % 1,45 37,5 %0,375 1/30, %3/10 4 % 0,04 1/200 0,005 29/20145 %

37 Les nombres Nombre pair et impair Nombres pairs Tous les nombres divisibles par deux. {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, …} Nombres impairs Tous les nombres qui ne se divisent pas par deux. {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, …}

38 Les nombres Nombre premier et multiple {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, …} {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, …} Nombre premier Nombre qui ne se divise que par 1 et lui-même, lui- même étant différent de 1. Les multiples Série de nombres qui se divisent tous par le même nombre. Par exemple: les multiples de 3:

39 Exercices Pair, Impair et Premier Est-ce un nombre pair, impair ou premier ? Impair et premierImpairPairImpair et premierImpair Pair et premierPairImpair

40 Les nombres Divisibilité des nombres Divisible par 2 Tous les nombres pairs Divisible par 3 Tous les nombres dont la somme des chiffres les composant est divisible par 3. Exemple: 231: = 6, 6 est divisible par 3 donc 231 est divisible par 3.

41 Les nombres Divisibilité des nombres Divisible par 4 Tous les nombres dont les deux derniers chiffres se divisent par 4. Comme 324, 24 se divise par 4, donc 324 se divise par 4. Divisible par 5 Tous les nombres qui se terminent par le chiffre 0 ou 5.

42 Les nombres Divisibilité des nombres Divisible par 6 Tous les nombres qui se divisent à la fois par 2 et par 3. Divisible par 9 Tous les nombres dont la somme des chiffres qui le forment se divise par 9.

43 Exercices Divisibilité Se divise-t-il par 2, 3, 4, 5, 6 ou 9 ? Par 3 et 5Par 2 et 4Par 3 et 9Par 3, 5 et 9Par 2 et 4Par 3Par 2, 3, 4 et 6Par 5Par 2, 3, 5et 6Par 2et 4

44 FIN Mario Dumais CSMM


Télécharger ppt "Mise en forme en Mathématiques 1e partie: Les quatre opérations 1) La loi des signes 2) Les fractions 3) Priorité des opérations."

Présentations similaires


Annonces Google