La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

La numération en grande section maternelle.. RÉFLEXION AUTOUR DU PATRIMOINE Champ numérique en deux parties José Fraga.

Présentations similaires


Présentation au sujet: "La numération en grande section maternelle.. RÉFLEXION AUTOUR DU PATRIMOINE Champ numérique en deux parties José Fraga."— Transcription de la présentation:

1 La numération en grande section maternelle.

2 RÉFLEXION AUTOUR DU PATRIMOINE Champ numérique en deux parties José Fraga

3 NUMÉRATION ORALE 16 termes: apprentissage par cœur. 5 mots pour nouvelles dizaines ; 20, 30, 40, 50 et 60 6 mots pour les puissances de 10 ; 100, 1000, million, milliard, billion, trillion Un seul mot pour lélément 0 José Fraga

4 Système complexe sans algorithme régi de façon régulière Numération de type additif 21 = (20 +1) Multiplicatif 80 = (4 x 20) Les deux 99 = (4 x 20) + (10 + 9) Anomalies : vingt et un vingt-deux (plus de et) cinq cents, jamais de « un cent » José Fraga suite

5 NUMÉRATION ÉCRITE 10 signes : 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 (il faudra donner le zéro car les enfants ne comptent pas spontanément par 0) système fini pouvant écrire un nombre infini de nombres. Base 10, numération de position, utilisation du zéro De 1 à 99 : 2 algorithmes (celui des unités et des dizaines) De 1 à 100 : il y a 3 algorithmes José Fraga

6 « Tu sais compter ? Je técoute ! » travaux de K. Fuson. José Fraga

7 3 grandes zones dans le spontané de lenfant : La zone stable et exacte La zone stable et inexacte La zone ni stable ni exacte

8 LA ZONE STABLE ET EXACTE Partie conventionnelle : vers 4 ans Stable car elle revient lorsquon la sollicite et sans omission Très fort accroissement Entre 2 et 4 ½ ans, il ne se passe pas grand- chose Cest du par cœur On peut amener les enfants de 4 ans dans la compréhension de notre système numérique orale José Fraga

9 ZONE STABLE ET INEXACTE un, deux, trois, quatre, …sept, quatorze, vingt-quatre. Il y a là des omissions (aux alentours de 15, 16, 17 en général) Zone de 1 à 19; omissions 15, 16, 17 Zone de 1 à zone plus large; omissions des dizaines Ils nont pas « compris » lalgorithmie dans la chaîne orale Un seul moyen ; mémorisation des éléments pour lenfant José Fraga

10 ZONE NI STABLE NI EXACTE Lenfant ne restitue pas de partie stable A devient unique en détruisant C et B Puisque C et B viennent enrichir A José Fraga CBA

11 QUELS SONT LES NIVEAUX DE PROCÉDURE ? Niveau Chapelet Niveau chaîne insécable Niveau chaîne sécable Niveau chaîne terminale José Fraga

12 NIVEAU CHAPELET undeuxtroisquatrecinqsixsepthuitneufdixonzedouze … Lenfant le dit dans son souffle, tiroir qui ne vit pas. Lenfant ne peut rien en faire si ce nest prendre du plaisir à le dire. Tiroir sans signification arithmétique. Lenfant ne sait pas à ce niveau faire la correspondance terme à terme puisque les mots ne sont pas indépendants. Le undeuxtrois… est lembryon minimum pour commencer un travail en mathématiques. José Fraga

13 NIVEAU CHAÎNE INSÉCABLE Les mots vont sindividualiser mais avec le respect de lordre. Dans la spontanéité il ne peut commencer que par 1 sauf si on lui donne trois nombres consécutifs. On peut résoudre des situations de type additif. Type dactivité: « compte jusquà… » Lenfant commence à 1 et est obligé de mémoriser la borne demandée pour pouvoir sarrêter. Lenfant arrive progressivement à dénombrer, à plaquer un geste et un nombre (objet que lon peut toucher, visuel pas conseillé) « quest-ce qui vient après ? » (toujours dans la ZSE) lenfant a besoin de reconstruire la chaîne à partir de 1. José Fraga

14 NIVEAU CHAÎNE SÉCABLE Les liaisons se font à nimporte quel endroit de la chaîne. « compter à partir de… » Lindépendance du nombre, nouvelle capacité. « compter de X à Y » Deux capacités en place aux alentours de 6 ans. Possibilité de naviguer dans la chaîne à rebours (à partir de Y à X) Mais deux types derreur qui se dégagent - nom des dizaines saute souvent - nom des dizaines qui nest pas le bon (dizaine inférieure) « donne le nombre juste avant » José Fraga

15 NIVEAU CHAÎNE TERMINALE Elle correspond au mieux à celle des adultes. Chaque nombre a une indépendance totale. (successeur, prédécesseur) « compter n à partir de X (en avant, en arrière) » « compter de X à Y en avant et en arrière. » Entre 6 et 7 ans, des compétences plus grandes se développent très vite. La faculté de compter de +3-2 de X (dans lécrit dans un premier temps) José Fraga

16 LE DÉNOMBREMENT José Fraga

17 LA SYNTHÈSE DE LA NUMÉRATION ORALE ET ÉCRITE MÊME SI LE DÉNOMBREMENT SAPPUIE PLUS SUR DE LORAL. 3 Catégories de quantification (Klahr & Wallace 1976, Fayol 1985, Dehaene 1992) Subitizing (processus responsable des réponses rapides pour les petites numérosités.) Dénombrement Quantification très rapide sans comptage (estimation désigne le processus peu précis utilisé de préférence pour les grandes collections.) José Fraga

18 DÉNOMBREMENT SUITE José Fraga R.Gelman Pour dénombrer, il faut combiner 5 paramètres: Principe de bijection (terme à terme) Principe de suite stable Principe de cardinalité Principe dabstraction Principe dordre quelconque

19 Rendre les apprentissages plus explicites. On fait des mathématiques ! « la recherche dune motivation extrinsèque conduit beaucoup de maîtres débutants (mais la question me semble se poser également pour les plus expérimentés) à enjoliver les situations denseignement pour les rendre plus motivantes […] En revanche, peu nombreux sont les maîtres qui ont le souci de montrer aux enfants à quel point ça peut être « drôle » de réfléchir ! » (Goigoux) Stabiliser le format de la séance. « Cest en effet quand le monde devient prévisible que lenfant peut être sensible aux variations introduites et prendre une part de plus en plus grande dans lactivité et son contrôle. » (Cèbe, Goigoux et Paour)

20 3 – 3 Être observateur actif. Cette posture nest pas accessible demblée pour tous et doit donc passer par une explicitation. En effet, que dire de ces enfants (souvent les plus fragiles) qui pensent quil suffit dêtre gentils pour endosser leur habit délève. Ceux qui ne se mobilisent que lorsquils sont sollicités nominativement. Ceux qui ne soupçonnent même pas quil y a un travail interne possible dans les moments collectifs. Ceux qui attendent ou qui sagitent dans lennui. Définir avec eux dune manière explicite tout le travail de mentalisation et de vérification quils ont à entreprendre participe pleinement à lenrichissement des procédures et à laccès au savoir. Favoriser la prise de conscience que même si deux ou trois élèves sont interrogés, on peut compter en même temps dans sa tête, repérer les oublis et les erreurs et les verbaliser ensuite. Faire émerger le fait que lon apprend dans tous ces moments de la perfection et des erreurs des autres, plonge immanquablement chacun dans des habiletés cognitives et sociales propres à la réussite scolaire. Définir les rôles…

21 ACTIVITÉS DASSOUPLISSEMENTS José Fraga

22 AVEC UN PARTICIPANT Compter le plus loin possible. (augmenter la zone stable et exacte) Compter en énonçant un nombre fort et un nombre faible. (premier pas vers lindépendance du nombre: chapelet insécable) Compter en énonçant un nombre et en taisant le suivant. Compter le plus loin possible en frappant ce qui est dit. Compter: un nombre dit, et frapper sur le nombre que lon tait. ( un, main, trois, main,…) Frapper entre les énonciations. (un, main, deux, main, trois…) José Fraga

23 AVEC 2 PARTICIPANTS Un enfant compte, lautre frappe sur ses dires. Énoncer sur les frappés de lautre. Les enfants donnent un nombre chacun leur tour. (ping-pong ; accompagner avec un geste de raquette) Compter chacun son tour en frappant sur ses dires. Demander aux enfants dénoncer 2 nombres consécutifs. Énoncer 2 nombres consécutifs, un dit et un non- dit, et ainsi de suite. Un enfant dit deux nombres consécutifs et lautre dit un nombre. Un enfant dit un nombre en chaîne orale et lautre en chaîne écrite. José Fraga

24 Tableau de progressivité de lapprentissage de la chaîne numérique orale. (avec un participant) + Objectif général : maîtriser la compétence des programmes 2008, mémoriser la suite des nombres au moins jusquà 30 ConsignesNiveau de procédure (Fuson)Principes de dénombrement (Gelman)Objectifs spécifiques « Compter le plus loin possible. »Chaîne chapelet Chaîne insécable Chaîne sécable Principe de suite stable.Allonger la zone stable et exacte. Enrichir la zone stable et inexacte. « Compter le plus loin possible en frappant sur ce qui est dit. » Favoriser le passage de la chaîne chapelet à la chaîne insécable. Principe de suite stable. Principe correspondance terme à terme. Synchroniser geste et nombre. « Compter en énonçant fort un nombre et doucement le suivant. » Premier pas vers lindépendance des nombres Chaîne chapelet vers chaîne insécable. Principe de suite stable.Fractionner la zone stable et exacte. « Compter en énonçant un nombre et en frappant dans ses mains sur le nombre suivant que lon ne dit pas. » Renforcement chaîne insécable.Principe de suite stable. Principe correspondance terme à terme. Fractionner la zone stable et exacte. Synchroniser geste et nombre. « Compter en énonçant un nombre et en taisant le suivant. » Renforcement chaîne insécable.Principe de suite stable.Fractionner la zone stable et exacte. Mentaliser les nombres non-dits. « Frapper entre les nombres. »Chaîne insécable.Principe de suite stable. Principe correspondance terme à terme. Fractionner la zone stable et exacte. Enlever létayage de la synchronisation « Compter de 1 à x. »Chaîne insécable.Principe de suite stable. Préparation au principe de cardinalité. Mémoriser une borne supérieure. « Compter de x à y. » x < yChaîne sécable.Principe de suite stable. Préparation au sur-comptage. Mémoriser une borne supérieure et inférieure. « Compter de x à y. » x > yChaîne sécable.Principe de suite stable. Préparation au retrait. Compter à rebours.

25 Tableau de progressivité de lapprentissage de la chaîne numérique orale. (avec deux participants) Objectif général : maîtriser la compétence des programmes 2008, mémoriser la suite des nombres au moins jusquà 30 ConsignesNiveau de procédure (Fuson)Principes de dénombrement (Gelman) Objectifs spécifiques « Un élève compte, lautre frappe sur les nombres. » Chaîne chapelet Chaîne insécable Principe de suite stable. Principe correspondance terme à terme. Synchroniser geste et nombre Jeu du ping-pong : faire un geste de la main comme si on renvoyait une balle de ping-pong avec une raquette. Organisation pour les consignes ci-dessus. On peut apporter une variante si lon fixe une borne supérieure et/ou une borne inférieure, afin dengager les élèves dans la chaîne insécable ou sécable. « Un élève dit un nombre, lautre dit le suivant. » Chaîne insécablePrincipe de suite stable. Principe correspondance terme à terme. Allonger la zone stable et exacte. Fractionner la zone stable et exacte « Demander aux enfants dénoncer 2 nombres consécutifs. » Chaîne insécable Chaîne sécable Principe de suite stable. Principe correspondance terme à terme. Allonger la zone stable et exacte. Fractionner la zone stable et exacte « Un élève dit 2 nombres consécutifs et lautre dit 1 nombre. » Chaîne insécable Chaîne sécable Principe de suite stable. Principe correspondance terme à terme. Allonger la zone stable et exacte. Fractionner la zone stable et exacte « Enoncer 2 nombres consécutifs, un dit et un non-dit. » Chaîne insécable Chaîne sécable Principe de suite stable. Principe correspondance terme à terme. Allonger la zone stable et exacte. Fractionner la zone stable et exacte

26 ET AVEC TOUTE LA CLASSE Le maître ou un enfant dit un chef de famille et demande à un enfant de dire tous les enfants de la famille. Chaque enfant dit un nombre chacun son tour en: se levant tapant dans ses mains tapant sur ses cuisses José Fraga

27 Activités avec les cerceaux.

28 Travaux avec les cerceaux Ce travail seffectue dans la zone stable et exacte des enfants Marcher dans les cerceaux en disant un nombre par pas. Même consigne mais en partant de lautre « bout ». (vérifier ainsi que lon arrive au même nombre dans la chaîne orale et que le dernier nombre dit est le cardinal de la collection.) Un enfant marche dans les cerceaux et un autre compte. Un enfant marche dans les cerceaux mais peut reculer dun cerceau de temps en temps pendant quun autre enfant compte. Disposer des papiers dans quelques cerceaux : un enfant marche dans les cerceaux, et oralise lorsquil ny a pas de papier. Même chose avec un enfant qui marche et un qui compte. Au départ, deux (ou trois ou plus) enfants. Le premier entre dans le premier cerceau et dit UN, le second dépasse le premier et dit DEUX et ainsi de suite. On peut faire également ce jeu avec des papiers, ce qui implique que certains enfants de temps en temps noralisent pas. On dispose des cerceaux (5 ou 6) en cercle. On procède de la même manière avec des enfants qui se dépassent. On dispose deux étiquettes nombres (5 et 15), dire les nombres en commençant à la 1 ère étiquette jusquà la 2 e. José Fraga

29 Situations problèmes. Déroulement : Une demande de constitution de collection est faite de différentes manières ; oralement ; « Je voudrais que vous fabriquiez une collection de 7 gobelets. » « Je voudrais que vous construisiez une collection de 6 pions. » ….

30 Une situation multiple visuellement ; --- sous forme de doigts --- sous forme de configurations figuratives --- sous forme de panneaux --- sous forme détiquette « nombre » --- sous forme de combinaison étiquette « nombre » et configuration figurative. (préparation au sur-comptage ou stratégie Min) Remarque : Lorsque les enfants sont dans une situation de découverte, après un ou deux essais, on notera les différentes stratégies, mais aussi on stylisera la tâche pour que les enfants les plus fragiles puissent sapproprier la chronologie de lactivité (la tâche moyen ne doit pas être la tâche principale.)

31 Une situation multiple. Démarche : Toutes les phases de découverte se font collectivement ; cest-à-dire que les consignes se passent pour tout le groupe et les enfants travaillent sur le même rythme. On instaurera une habitude de travail ; chacun est sollicité pour prendre connaissance du travail fait par les autres lorsquil a terminé sa production. Ceci afin de favoriser les interactions entre les élèves. On demandera donc aux enfants dexpliquer leur manière de procéder. On comparera les procédures en regroupant tout le monde afin de verbaliser sur celles-ci et permettre ainsi lidée importante que tout le monde ne fonctionne pas de la même manière, quil existe différentes procédures.

32 Une situation multiple Dans les phases de renforcement des procédures visitées auparavant, les élèves devront se fixer eux- mêmes des « contrats » et seront donc amenés à répéter à volonté les procédures. Dans ces phases de renforcement, on pourra instaurer deux rôles dans le fonctionnement ; - les « loueurs » qui donneront à chacun les pions demandés ou verbalement (mise en mémoire du cardinal) ou par écrit (correspondance entre chaîne orale et chaîne écrite) - les « accompagnateurs » qui seront chargés de poser des questions et de guider dans la chronologie les enfants les plus fragiles. Ils pourront également valider le travail des autres enfants.


Télécharger ppt "La numération en grande section maternelle.. RÉFLEXION AUTOUR DU PATRIMOINE Champ numérique en deux parties José Fraga."

Présentations similaires


Annonces Google