La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Chapitre 3: Les équations et les inéquations Consultez les pages 126-127 pour une introduction et les concepts clés.

Présentations similaires


Présentation au sujet: "Chapitre 3: Les équations et les inéquations Consultez les pages 126-127 pour une introduction et les concepts clés."— Transcription de la présentation:

1 Chapitre 3: Les équations et les inéquations Consultez les pages pour une introduction et les concepts clés

2 Chapitre 3 Prépare-toi Ces concepts sont nécessaire à réviser avant de commencer Chapitre 3: 1. Les énoncés dinégalité 2. Le modèle zéro 3. Résoudre des équations par la méthode des essais systématiques et la méthode du camouflage 4. Résoudre des équations à laide de carreaux et de symboles algébriques 5. Développer des expressions

3 3.1: Résoudre des équations à une variable #1 Une équation est un énoncé dégalité entre deux expressions qui comportent au moins une variable. Par exemple, 3x + 3 = 2x – 1 est une équation.

4 3.1 #2 Résoudre une équation signifie trouver le nombre qui, substitué à la variable, vérifie léquation. Le nombre qui vérifie léquation est la solution de léquation. Par exemple, pour léquation, x + 2 = 6, la solution est x = 4 parce que = 6

5 3.1 #3 Une équation se compare à une balance en équilibre. À chaque étape, il faut agir sur les deux membres de léquation de la même manière pour maintenir léquilibre. On crée ainsi des équations équivalentes plus simples. Les équations équivalentes ont la même solution.

6 3.1 #4 Une opération inverse est une opération mathématique qui défait lopération réciproque. Par exemple, laddition et la soustraction sont des opérations inverses; la multiplication et la division sont des opérations inverses.

7 3.1 #5 Durant cette section, il y a trois types des problèmes que tu dois comprendre à résoudre. Voici les trois: 1. Résoudre une équation en plusieurs étapes 2. Résoudre une équation qui comporte des fractions 3. Résoudre un problème de mots par une équation

8 3.1 #6 Une stratégie suggérée: 1. En résoudrant des équations, je suggère à toujours vérifier ta réponse par substituer directement la valeur exacte du variable dans léquation. 2. Si les deux côtés donnent la même réponse, ta solution est correcte.

9 3.2: La représentation graphiques et symbolique densembles #1 Une inéquation est un énoncé mathématique qui contient au moins une variable et qui relie deux expressions à laide du symbole dinégalité,, or Le symbole signifie est supérieur ou égal à et le symbole signifie est inférieur ou égal à.

10 3.2 #2 Des exemples des inéquations sont les suivants: 4 < 5 x 3 -2 a 6

11 3.2 #3 La notation ensembliste est un énoncé mathématique qui exprime une inéquation ou une équation ainsi que lensemble des nombres auquel la variable appartient.

12 3.2 #4 Voici un exemple de la notation ensembliste: {x| -2 x < 5, x ε R} Le symbole ε (epsilon en langue grecque) signifie « appartient à » ou « est un élément de »

13 3.2 #5 La notation ensembliste peut être représenter en 2 différents façons: 1. symboliquement comme une inéquation (par exemple, {x| -2 x < 5, x ε R}) 2. graphiquement comme une droite numérique (voir la page 147)

14 3.2 #6 En représentant un ensemble graphiquement, un point vide indique que le nombre nest pas inclus dans lensemble et un point plein indique que le nombre est inclus dans lensemble.

15 3.2 #7 Attention! Au chapitre 1, tu as étudié les sous-ensembles de nombres réels: les nombres naturels (N) les nombres non nuls (N*) les nombres entiers (Z) les nombres rationnels (Q) les nombres irrationnels (Q avec une barre en haut)

16 3.3: Résoudre des inéquations à une variable #1 Pour résoudre une inéquation, procède de la même manière que pour une équation: Isole la variable dun côté de linéquation en effectuant des opérations inverses sur les deux membres.

17 3.3 #2 Cependant, quand tu multiplies ou divises chaque membre par un nombre négatif, tu dois inverser le symbole dinégalité. Ce fait est très important à suivre et il faut faire attention à cette détail si tu veux faire correctement ces questions.

18 3.3 #3 La solution dune inéquation est un ensemble de valeurs qui, substituées à la variable, vérifient linéquation. Cette ensemble de valeurs qui vérifient linéquation sappelle lensemble- solution de linégalité.

19 3.4: Résoudre des problèmes à laide déquations et dinéquations linéaires #1 La capacité de résoudre des problèmes occupe une place importante dans la vie quotidienne. Létude des mathématiques vise notamment à apprendre différentes stratégies de résolution de problèmes.

20 3.4 #2 Il y plusieurs stratégies disponible pour résoudre un problème. Voici quatre exemples: 1. Dresse un tableau 2. Procède par essais systématiques 3. Cherche une régularité 4. Écris une expression algébrique et résous-la

21 3.4 #3 Dans cette section, tu dois comprendre comment résoudre deux types des problèmes différents: 1. Résoudre un problème à laide dune équation 2. Résoudre un problème à laide dinéquations

22 3.4 #4 Pour résoudre un problème à laide dune équation, voici les cinq étapes à suivre: 1. Lire le problème complètement au minimum de trois fois. 2. Choisir un variable (dhabitude une lettre de lalphabète) pour représenter la quantité inconnue.

23 3.4 #5 3. Écrire léquation ou linéquation. (Voici la partie difficile) 4. Résoudre léquation ou linéquation algébriquement. 5. Écrire une conclusion. Cest-à-dire que tu vérifies ta solution par la substitution directe et tu écris la réponse en phrase complète.

24 Le sommaire du chapitre 3 Quels sujets sont-ils discutés pendant le chapitre 3?


Télécharger ppt "Chapitre 3: Les équations et les inéquations Consultez les pages 126-127 pour une introduction et les concepts clés."

Présentations similaires


Annonces Google