La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

ASI 3 Méthodes numériques pour l’ingénieur Calcul des valeurs propres.

Présentations similaires


Présentation au sujet: "ASI 3 Méthodes numériques pour l’ingénieur Calcul des valeurs propres."— Transcription de la présentation:

1 ASI 3 Méthodes numériques pour l’ingénieur Calcul des valeurs propres

2 Illustration : un système mécanique à deux degrés de liberté m1m1 m2m2 f(t)f(t) k1k1 k2k2 x1(t)x1(t) x2(t)x2(t) Seconde loi de Newton Écriture matricielle

3 Fréquences de résonance Le comportement des deux ressorts est découplé - si l’on admet que les deux valeurs propres sont positives, il existe deux pulsations propres caractérisant le système

4 Résonances (T. Von Karman, the wind and beyond,1963) 1831, près de Manchester, des miltaires passent un pont au pas les avions qui vibrent et s’écrasent immeubles et tremblements de terre Ariane : moteur et structure pont de Tacoma –1,6 km, pointe de la technologie –7 novembre 1940 : vents de 67 km/h, il se désagrège

5 Amplitude de la réponse d ’un système oscillant

6 Définition illustration Définition : i est une valeur propre de A, v i est un vecteur propre de A. Direction propre

7 Cercles de Gerschogrin Théorème (cercle de Gerschogorin): Soit A une matrice carrée, soit R le cercle du plan complexe : Alors toutes les valeurs propres de A sont dans un des cercles R

8 Démonstration Toute valeur propre appartient à un cercle, donc à l’intersection de tous les cercles

9 Supposons que l’on connaisse une valeur propre Idée : approximation successives sur la valeur propre Méthode de la séquence.

10 intuition la matrice A admet n vecteurs propres v i linéairement indépendants Hypothèse

11 intuition la matrice A admet n vecteurs propres v i linéairement indépendants Hypothèse

12 Puissance itérée Théorème : Si A est une matrice carrée, non singulière (régulière)

13 Comment calculer la plus petite valeur propre ? Exemple de question à l’examen

14 Comment calculer la plus petite valeur propre ? Exemple de question à l’examen

15 Comment calculer la plus petite valeur propre ? Exemple de question à l’examen Et si on remplace A par B=A-  I ou  est un réel ?

16 Calcul de toutes les valeurs propres : la méthode de déflation Cas simple : A est symétrique ? Cas général : A est quelconque, la méthode de Duncan et Collard

17 Théorème (Shur) : Soit A une matrice carrée, Alors il existe une matrice U non singulière telle que : avec T une matrice triangulaire supérieure dont la diagonale est composée des valeurs propres de A. Démonstration : voir Théodore et Lascaux Propriétés des valeurs propres Définition : deux matrices A et B sont similaires s’il existe une matrice Q non singulière telle que : Théorème : Si A et B sont des matrices similaires et est une valeur propre de A associée au vecteur propre x (non nul), Alors est aussi une valeur propre de B avec le vecteur Qx Démonstration

18 Théorème : Soit A une matrice carrée symétrique, Alors il existe une matrice Q orthogonale telle que : avec D une matrice diagonale composée des valeurs propres de A; et Q composée des vecteurs propres de A qui sont orthogonaux. Démonstration : Matrices équivalentes

19 Principe de la méthode QR les valeurs propres d’une matrice triangulaire sont sur sa diagonale il existe un transformation orthogonale telle que T=Q’AQ alors T et A sont équivalentes (elles ont les même valeurs propres) et T est une matrice triangulaire Comment construire Q ?

20 La méthode QR Il est si facile le résoudre un système « triangulaire » ! Q « facilement » inversible et R triangulaire Définition : on appelle matrice de Householder du vecteur normé u une matrice H de la forme suivante Propriété : une matrice de Householder est symétrique et orthogonale H T H=I Les transformations orthogonales « conservent » la norme

21 QR et valeurs propres Théorème : si A est une matrice inversible, de valeurs propres réelles différentes la suite converge vers une matrice triangulaire supérieure dont la diagonale est constituée des valeurs propres de A Démonstration :toutes les matrices de la suite ont les mêmes vp initialisation Une fois qu’on a les valeurs propres, les vecteurs propres se trouvent facilement.

22 Méthode de Householder 1. On utilise l’algorithme de Householder pour construire une matrice T tris diagonale ayant les mêmes valeur propres que A 2. On pose T(0) = T On décompose T(0) = QR et on construit T(1) = RQ et on itère : (Q,R) = decomposeQR(T(k)) T(k+1) = R*Q Alors la suite diag(T(k)) converge vers les valeurs propres de A.

23 Matrices semblables (qui ont les mêmes valeurs propres)

24 SVD : décomposition en valeurs singulières Matlab : deux programmes équivalents : svd(A).^2 eig(A'*A) AUV =

25 Conclusion on connaît le vecteur propre : calculer la valeur propre on connaît la valeur propre : calculer le vecteur propre calculer un vecteur et la valeur propre associé –la plus grande : puissance itérée –la plus petite : puissance inverse –la plus proche de k : puissance modifiée calculer toutes les valeurs propres d’un coup –A est symétrique : méthode de Jacobi –cas général : méthode QR


Télécharger ppt "ASI 3 Méthodes numériques pour l’ingénieur Calcul des valeurs propres."

Présentations similaires


Annonces Google