La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

La construction du nombre à la maternelle La Ferté Macé le 20 avril 2011.

Présentations similaires


Présentation au sujet: "La construction du nombre à la maternelle La Ferté Macé le 20 avril 2011."— Transcription de la présentation:

1 La construction du nombre à la maternelle La Ferté Macé le 20 avril 2011.

2 Sommaire Quelques remarques concernant le dénombrement Quelques points concernant la construction du concept de nombre qui semblent importants Exemples dactivités « rituelles » possibles Quelles activités selon les niveaux ? Un point dhistoire

3

4 On peut établir un parallèle entre lhistoire de lhumanité et lhistoire scolaire (le cheminement de lélève) pour la construction du nombre. Lépistémologie (théorie de la connaissance) nous enseigne que lenfant apprend comme lHomme a appris.

5 Représenter plusieurs « mêmes » Au début de la P.S. Représentation et « perception globale » dune petite quantité sans nécessairement utiliser le dénombrement, une conceptualisation ou une symbolisation du nombre. Cf. Premiers pas vers les maths de Rémi Brissiaud

6 Les étapes de la construction du nombre Avec le développement du commerce (troc), de lagriculture, etc. Situation de besoin : comment symboliser, conserver une trace, mémoriser, communiquer une quantité (ou une position) ?

7 Représenter / simuler une quantité Première abstraction des choses du réel

8 Représenter et coder une quantité Écrire, garder en mémoire, communiquer

9 Les étapes de la construction du nombre Le nombre simpose au quotidien Evolution de la trace : comment la rendre pratique (symbole) et efficace (système) ?

10 Faire évoluer la représentation Vers une formalisation adéquate

11 Les étapes de la construction du nombre Le nombre simpose au monde (du local, au régional… vers luniversel) Quel système de représentation est le plus efficace ? Quelle culture commune adopter ?

12 Vers la numération décimale Le code commun culturel de lhumanité

13 Les étapes de la construction du nombre Quels autres usages du nombre ? Le jeu des pharaons - jeu de Senet (2000 avant J.C.)

14 Les étapes de la construction du nombre « Jinvente le nombre » Cest lémergence du besoin, dune nécessité. « Jutilise le nombre » Cest lomniprésence de ce besoin au quotidien. « Je joue avec le nombre » Cest le détournement de lutilitaire vers le ludique.

15 Ces étapes épistémologiques (naturelles) de la construction du nombre (besoin > vécu > plaisir) sont aussi les moteurs de lapprentissage. Il sagit donc pour lenseignant de proposer aux élèves des situations qui vont lamener à inventer le nombre, vivre avec le nombre et jouer avec le nombre. Quen disent les programmes ? Epistémologie du nombre

16 Les programmes Approcher les quantités et les nombres Lécole maternelle constitue une période décisive dans lacquisition de la suite des nombres (chaîne numérique) et de son utilisation dans les procédures de quantification. Les enfants y découvrent et comprennent les fonctions du nombre, en particulier comme représentation de la quantité et moyen de repérer des positions dans une liste ordonnée dobjets. […]

17 Approcher les quantités et les nombres […] Dès le début, les nombres sont utilisés dans des situations où ils ont un sens et constituent le moyen le plus efficace pour parvenir au but : jeux, activités de la classe, problèmes posés par lenseignant de comparaison, daugmentation, de réunion, de distribution, de partage. […] BO du 19 juin 2008 problèmesactivités de la classe Quelles situations en classe ? A quelles situations de classe correspondent ces trois étapes ? Besoin > Vécu > Plaisir jeux

18 Quelques remarques concernant le dénombrement

19 I Quelques remarques concernant le dénombrement Remarque préalable : dénombrer cest trouver le nombre déléments dune collection quel que soit le moyen utilisé pour trouver ce nombre. 1°) Les différentes manières de dénombrer a) Dénombrement par reconnaissance immédiate des petites quantités b) Dénombrement par comptage un par un : on utilise la comptine numérique Ce qui est difficile cest de faire comprendre que le dernier mot-nombre prononcé n'est pas un simple numéro mais représente à lui seul la quantité de tous les objets. Première remarque concernant le dénombrement par comptage : Pour réussir à dénombrer les éléments dune collection par comptage lenfant doit comprendre, comme on vient de le dire, que le dernier mot-nombre prononcé représente à lui seul la quantité de tous les objets. Il doit aussi, en amont : - comprendre que la nature des objets à compter na pas dimportance - comprendre quon peut compter les objets dans nimporte quel ordre. - savoir énumérer les éléments dune collection cest-à-dire savoir passer tous les éléments en revue sans en oublier et sans en désigner un deux fois. - connaître la comptine numérique - savoir associer à chaque élément de lensemble un mot-nombre et un seul de la comptine récitée dans lordre. Sommaire

20 Deuxième remarque concernant le dénombrement par comptage : Etant donné les difficultés posées par le dénombrement par comptage, Brissiaud préconise dans son ouvrage « Premiers pas vers les maths – Les chemins de la réussite à lécole maternelle » dautres activités à pratiquer en PS et début de MS. Sommaire

21 Exemple en PS : « un » « et un » « quatre » Les propositions de Brissiaud consistent en un travail sur les liens entre les nombres, les décompositions : Sommaire

22 Si les objets sont déplaçables : Si les objets ne sont pas déplaçables : « un » « deux » « trois » « quatre » « un » « deux » « trois » « quatre » Troisième remarque concernant le dénombrement par comptage : On peut procéder ainsi : Sommaire

23 c) Dénombrement en utilisant des "collections-témoins organisées" (configurations spatiales diverses, configurations digitales, etc.) qui servent de repères « deux » « et encore un » « ça fait trois » Remarque : On ne peut pas bien concevoir la notion de nombre si on nest pas conscient des liens qui unissent les nombres : Exemples : « 3 est plus petit que 4 » ; « 3 et 1 ça fait quatre ». Sommaire

24 Quelques points concernant la construction du concept de nombre qui semblent importants

25 II Quelques points concernant la construction du concept de nombre qui semblent importants 1°) Faire comprendre que les nombres sont utiles pour résoudre des problèmes (ayant du sens pour lélève …) Exemple (niveau GS) inspiré dune proposition de Dominique Valentin Salle de jeu Dortoir Combien de bébés ont fini leur sieste et sont dans la salle de jeux ? Combien de bébés font encore la sieste dans le dortoir ? Sommaire

26 Remarque : pour des idées de problèmes, voir, par exemple, les ouvrages de Dominique Valentin (un pour PS/MS et un pour GS) et louvrage de léquipe ERMEL pour la GS : Sommaire

27 b) Faire comprendre quun nombre a plusieurs représentations et quil faut savoir passer dune représentation à une autre Sommaire

28 Ce qui sera poursuivi au cycle 2 : Sommaire

29 Et au cycle 3 : Sommaire

30 Remarques concernant les représentations : - Il semble souhaitable de ne pas toujours utiliser la même configuration de doigts - La présence de bandes numériques collectives ou individuelles est importante (remarque : si la file numérique commence par 1 et non par 0, on fera plus facilement le lien entre aspect ordinal et aspect cardinal du nombre) c) Ne pas oublier que le nombre a aussi « un aspect ordinal » : lundi est le premier jour de la semaine, mardi le deuxième, etc. Boîte contenant un objet Exemple dactivité : « Comment faire comprendre dans quelle boîte se trouve lobjet, sans montrer cette boîte » Sommaire

31 Remarque : les activités permettant de faire le lien entre «aspect cardinal» et «aspect ordinal» du nombre sont intéressantes (exemple avec le calendrier : faire comprendre qu'un numéro de jour représente aussi une quantité de jours écoulés). d) Le choix des différentes contraintes (ou variables didactiques) permet de prendre en compte la diversité des élèves. Premier exemple (situation de référence proposée par R. Charnay) On dispose dun nombre donné de bouteilles et de bouchons (en nombre plus important que le nombre de de bouteilles) ; lélève doit préparer juste ce quil faut de bouchons pour en avoir un pour chaque bouteille. Première variante : le nombre de bouteilles est assez important mais les bouchons sont à proximité des bouteilles (il sagit de sapproprier la situation et de faire en sorte que la contrainte « un bouchon pour chaque bouteille » soit respectée). Deuxième variante : il y a 5 à 6 bouteilles (à adapter au niveau) ; les bouchons sont proches mais il faut préparer les bouchons sur un plateau avant de les mettre sur les bouteilles. Troisième variante : il y a 4 bouteilles (à adapter au niveau) ; les bouchons sont éloignés ; lélève doit aller chercher les bouchons avec un plateau en une seule fois (ou en plusieurs fois puis en une seule fois). Quatrième variante : il y a jusquà dix bouteilles (à adapter au niveau) ; les bouchons sont éloignés mais dans des paniers de un, deux ou trois bouchons ; lélève doit aller chercher les bouchons en plusieurs fois puis en une seule fois. Sommaire

32 Lélève doit poser un jeton sur chaque fleur dun dessin représentant un pot de fleur : Est-il possible de proposer des tâches différenciées aux élèves pour tenir compte des capacités des uns et des autres ? On peut y réfléchir en essayant de voir dans quelle mesure on peut jouer sur les variables suivantes : - la taille des nombres : on peut faire varier le nombre de fleurs. - l'accessibilité des jetons : les jetons sont à portée de main les jetons sont à distance les jetons sont à distance et l'élève doit aller chercher d'un coup tous les jetons. Deuxième exemple (qui sinspire dune situation proposée par D. Valentin) Sommaire

33 - les couleurs des fleurs : les fleurs doivent être de couleurs toutes différentes il doit y avoir trois fleurs rouges il doit y avoir une fleur rouge et deux fleurs jaunes - etc. Sommaire

34 Autres exemples illustrés Une situation en petite section. L'élève reçoit un ou plusieurs véhicules et un panier. Les places des voyageurs sont inoccupées. Il doit prendre juste ce qu'il faut de voyageurs pour remplir les voitures.

35 Autres exemples Une situation en moyenne section. Variante 1 La consigne est de "rapporter en une fois, juste ce quil faut de garages pour quil y en ait un pour chaque voiture. Il ne faut pas quil y ait de garage vide". Variante 2 La consigne est de "Aujourdhui, vous nirez pas chercher les garages tout de suite après que je vous ai donné les voitures mais seulement cet après midi (ou demain)". Variante 3 La consigne est de "Aujourdhui, ce nest pas vous qui irez chercher les garages mais vous les commanderez à un marchand. Vous lui direz ce que vous voulez et lui devra vous les préparer. Puis vous irez ensemble vérifier si vous avez réussi". Une situation de réinvestissement Chaque enfant reçoit quelques lapins (2 ou 3 au début). Ces lapins sont alors mis dans une boite au nom de l'élève. L'activité consiste à élaborer une stratégie pour pouvoir commander exactement une carotte par lapin.

36 Illustrations

37 En conclusion: Quelles sont les variables? La taille des collections, le fait de pouvoir agir ou non sur les objets sont des variables importantes que lenseignant utilise pour adapter les situations aux capacités de chacun. (progression) B0 HS du 19 juin 2008 La mise à distance Le report dans le temps Situation de communication (interlocuteur)

38 Les trois fonctions du nombre: Mémoire dune quantité Mémoire du rang Anticipation: donner le résultat dune action sans avoir à la réaliser.

39 Les trois concepts: Le concept de collection: (objets unis par une propriété commune) Le concept de désignation: (remplacer un objet par un symbole) Le concept dénumération: (pointer une et une seule fois tous les éléments dune collection)

40 Exemples dactivités « rituelles » possibles

41 a) La gestion des absents/présents - On dénombre les présents on doit trouver le nombre dabsents. - On compare le nombre dabsents hier et aujourdhui - Les élèves qui arrivent accrochent leur étiquette dans lordre sous une file numérique. On peut ensuite poser des questions : Qui est arrivé en premier ? Qui est arrivé en deuxième ? Qui est arrivé avant Eric ? Qui est arrivé après Nadia ? - Utilisation de cartes à points Remarque préalable : Les cartes à points sont une représentation des nombres qui peut être utilisée au cycle 1 et au cycle 2 et qui est intéressante au niveau de la liaison GS/CP (en particulier pour approcher la notion de dizaine). III Exemples dactivités « rituelles » possibles 1°) Les activités rituelles traditionnelles, des occasions pour poser des problèmes mathématiques Sommaire

42

43 Ensuite, on se compte et on trouve quon est 23. Certains élèves peuvent alors éventuellement faire le lien entre le 2 et le nombre de cartons pleins et entre le 3 et les trois points du dernier carton... Sommaire Un exemple d'utilisation : Tableau des absents-présents dans une classe de MS-GS

44 Problème : Voici le tableau des présents dans une autre classe ? Combien y a-t-il délèves dans cette classe ? Sommaire

45 b) Lutilisation du calendrier On est le 17. 1°) Combien de jours se sont passés depuis le 14 ? 2°) La maîtresse Aline revient dans combien de jours ? 3°) Combien de jours jusquà lanniversaire de Pierre ? 17 Sommaire Travail sur la feuille du mois : quel jour était le 1er du mois ? Combien y a-t-il eu de mardis le mois dernier ? Quel jour de la semaine était le 20 ? Recherche de la durée (en jours) dun événement (vacances, absence dun élève) sur le calendrier.

46 c) Le goûter - Des assiettes sont disposées sur une table. Problème : mettre un gobelet en face de chacune des assiettes. Variantes de la situation : - le nombre dassiettes est assez important mais les gobelets sont à proximité des assiettes (il sagit de sapproprier la situation et de faire en sorte que la contrainte « un verre pour une assiette » soit respectée). - il y a 5 à 6 assiettes (à adapter au niveau) ; les gobelets sont proches mais il faut préparer les gobelets sur un plateau avant de les mettre en face des assiettes. - il y a 4 assiettes (à adapter au niveau) ; les gobelets sont éloignés ; lélève doit aller chercher les gobelets avec un panier en une seule fois (ou en plusieurs fois puis en une seule fois). - il y a jusquà dix assiettes (à adapter au niveau) ; les gobelets sont éloignés mais dans des paniers de un, deux ou trois gobelets ; aller chercher les gobelets en plusieurs fois puis en une seule fois. Sommaire - 12 enfants ; des yaourts par packs de 4 dans le frigo; combien faut-il aller chercher de packs de yaourts?

47 Ahmed Sonia Dylan Jean Fatima Paul Louise Luc Seppi Habib Ali Sarah Et si on est 14 ? Sommaire

48 d) La météo Combien y a-t-il eu de jours décole avec du soleil durant le mois ? Sommaire

49 2°) Intégrer un petit moment dactivités mathématiques quotidiennes dans les rituels - Comptines de Brissiaud (travail sur les décompositions et les doubles) - « Le rituel du dé » (PS et MS) Tous les matins, un élève lance un dé et doit aller chercher une quantité dobjets correspondant à la quantité indiquée par le dé. Variables : - taille des nombres représentés sur les faces du dé et types de représentations - objets à proximité ou éloignés - si les objets sont éloignés possibilité ou pas demporter avec soi un référent (étiquette avec constellation par exemple) - etc. - Greli-grelo Un enfant met un certain nombre de cailloux (moins de 5) dans une des mains de lenseignant en les comptant à haute voix. Un autre enfant fait de même dans l'autre main. Lenseignant rassemble les deux mains en les fermant et tout le monde dit : "Greli-grelo, combien j'ai d'sous dans mon sabot?" Propositions puis validation par comptage. Sommaire

50 - Le soir on met des objets dans une boîte. Le lendemain on doit se souvenir de ce quil ya dans la boîte (sil y a beaucoup dobjets, les enfants peuvent noter ce quils veulent sur un bout de papier ; la lecture dun papier écrit par un camarade peut conduire à la nécessite délaborer un code commun) Sommaire Situations : « vers les maths »

51 -« Jeux de doigts variés » : « Montrez-moi 4 doigts » « Montrez-moi 4 doigts avec 2 mains » « Montrez-moi 3 doigts avec 1 main, maintenant avec 2 mains » etc... Sommaire

52 - Situation additive Combien de jetons sont cachés ? Sommaire

53 Autre exemple : Boîte opaque Combien y a-t-il de jetons dans la boîte ? On peut ensuite vérifier en vidant la boîte. (la réflexion précède ici la manipulation qui sert à vérifier si le résultat quon a trouvé est exact) On ajoute trois jetons. On ajoute quatre jetons. Sommaire

54 On peut utiliser le matériel proposé par Brissiaud (PS, MS et GS) MS-GS GS PS Sommaire et les ouvrages proposés par les éditions Accès : GS MS PS

55 On peut utiliser les exercices du site pepit.be (exercices sous forme danimations flash quon peut utiliser en ligne ou quon peut télécharger) :pepit.be

56 Activités et compétences Que lon parte des compétences à travailler ou que lon parte dun jeu ou dune activité disponible dans la salle de classe, il est souhaitable de bien cibler quelles compétences peuvent être travaillées à travers tel ou tel jeu ou telle ou telle activité.

57 Savoir dénombrer (les éléments dune sous-collection) Savoir comparer deux collections en les mettant en correspondance ou « en utilisant les nombres »

58 Savoir construire une collection ayant un nombre donné déléments Dans cet exercice les compétences à maîtriser concernent le graphisme : Savoir écrire le chiffre 3 et savoir écrire le chiffre 7 (en reproduisant des modèles) Savoir lire des écritures chiffrées et connaître la file numérique

59 Savoir dénombrer (et savoir comparer des collections) Savoir construire une collection ayant un nombre donné déléments

60 Quelles activités selon les niveaux ?

61 Proposition de programmation Proposition de programmation Sur le site de linspection académique de lOrne dans les ressources pédagogiques

62 Vidéo


Télécharger ppt "La construction du nombre à la maternelle La Ferté Macé le 20 avril 2011."

Présentations similaires


Annonces Google