La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

1 MAT3253 Géométrie I Professeur: Jurek Czyzowicz Consultations: Lundi 10h-11h30 Mercredi 10h00 – 11h30.

Présentations similaires


Présentation au sujet: "1 MAT3253 Géométrie I Professeur: Jurek Czyzowicz Consultations: Lundi 10h-11h30 Mercredi 10h00 – 11h30."— Transcription de la présentation:

1 1 MAT3253 Géométrie I Professeur: Jurek Czyzowicz Consultations: Lundi 10h-11h30 Mercredi 10h00 – 11h30

2 2 Liens internet utiles WhatIs/WhatIsGeometry.shtml geometria/Geometria.php

3 3 Géométrie comme science ; geo = terre, metria = mesure Lun de deux domaines de mathématiques pré moderne (autre - étude de nombres) La science mathématique des figures dans le plan et des volumes (les corps, au sens classique) dans lespace. Les progrès des connaissances ont rendu la définition classique beaucoup trop restrictive. On peut parler de la géométrie de lespace-temps et de nombreux espaces abstraits. La distinction entre ce qui est et nest pas géométrique est alors délicate. Toute structure, tout modèle, tout univers possible, peut être étudié, dune façon géométrique. On peut alors définir la géométrie comme la science des positions.

4 4 Limportance de la géométrie Euclide a réuni lensemble des connaissances géométriques de son temps dun telle façon quelles soient toutes ou bien des vérités premières, des axiomes, ou bien des théorèmes, prouvés à partir des axiomes. Cette méthode axiomatique a un immense prestige aux yeux des scientifiques et des philosophes en tant quidéal de perfection du raisonnement.

5 5 Exemples dapplications de la géométrie Topographie (parcellisation des terres en Grèce antique) Physique Mécanique (architecture, dessin industriel) Navigation (trigonométrie) Informatique (CAO, infographie) Beaucoup dautres (astronomie, géographie, etc.)

6 6 Aperçu historique: Les Indes (3000 – 500 a.J.C.) Conséquence de la planification urbaine Harappa et Mohenjo-Daro, 3000 a.J.C. (les rues aux angles parfaitement droits, briques «compas» de Lothal (sections de 40 degrés)) Période de Vedic ( a.J.C.), formes géométriques dans les autels, théorème de Pythagore, la valeur de (correcte jusquaux 2 chiffres décimaux)

7 7 Aperçu historique: Grèce antique (600 – 300 a.J.C.) Nouvelles figures, courbes, surfaces Déduction logique plutôt que tâtonnement Étude de formes abstraites (formes physiques – approximations) Théorie axiomatique (paradigme idéal pour 2,000 ans)

8 8 Aperçu historique: Grèce antique (600 – 300 a.J.C.) Thalès ( a.J.C.), introduit la déduction mathématique Pythagore ( a.J.C.) Euclide ( a.J.C.), Elements dEuclide

9 9 Aperçu historique. Géométrie Euclidienne Cinq postulats (axiomes) Conduire une droite d'un point quelconque à un point quelconque. Prolonger indéfiniment, selon sa direction, une droite finie. D'un point quelconque, et avec un intervalle quelconque, décrire une circonférence de cercle. Tous les angles droits sont égaux entre eux. Si une droite, tombant sur deux droites, fait les angles intérieurs du même côté plus petits que deux droits, ces droites, prolongées à l'infini, se rencontreront du côté où les angles sont plus petits que deux droits.

10 10 Aperçu historique. Géométrie Euclidienne Règle et compas Trisection de langle, la duplication du cube, quadrature du cercle

11 11 Aperçu historique. Géométrie islamique (700 – 1500) Optique, miroirs des sections coniques Théorie déquations cubiques Courbes comme équations Géométrie algébrique Arithmétique appliquée aux objets géométriques

12 12 Aperçu historique ( ) Géométrie analytique (coordonnées et équations), René Descartes ( ), Pierre de Fermat ( ) Début du calculus (ex. applications géométriques: tangente à une courbe, surface enfermée), Isaac Newton ( ), Gottfried von Leibniz ( ) Cinquième postulat dEuclide – géométrie non- Euclidiene (Bernhard Riemann 1854), application à la théorie de la relativité dAlbert Einstein Lintroduction à la rigueur mathématique (David Hilbert - Base de la géométrie ) Topologie Géométrie algorithmique, infographie

13 13 Lieux géométrique Un lieu géométrique désigne l'ensemble des points du plan ou de l'espace possédant une certaine propriété (vérifiant une condition donnée), à lexclusion de tous les autres points du plan. Exemple : Le lieu géométrique des points M dont la distance à un point fixe A est égale à R est le cercle de centre A et de rayon R.

14 14 Concepts de base. Point Le point, selon Euclide, est ce qui n'a aucune partie (on dirait aujourd'hui ce qui n'a aucune dimension ou aucune épaisseur.) Toutes les figures du plan et de l'espace sont constituées d'ensemble de points.

15 15 Concepts de base. Droite. Vision naïve « La ligne droite est le plus court chemin pour aller d'un point à un autre ». Définition formelle d'Euclide une ligne est une longueur sans largeur; et une ligne droite est une ligne également placée entre ses points.

16 16 Concepts de base. Droite. Droite ordonnée. Deux droites sur le plan peuvent être sécantes (elles sintersectent) ou parallèles Une droite ordonnée est une droite pour laquelle nous avons défini le sens (direction)

17 17 Concepts de base. Demi-droite. Une demi-droite est comme son nom lindique la moitié dune droite, à savoir lensemble des points dune droite à partir d'un point M de celle- ci. Par exemple la demi-droite [MN) a pour origine M et passe par N (elle passe par N et continue après N).

18 18 Concepts de base. Segment. un segment (ou un segment de droite) est un « morceau » de droite compris entre deux points, les extrémités de ce segment. Plus formellement, si on se donne deux points distincts A et B, le segment [AB] est l'ensemble (ou lieu) des points qui appartiennent à la droite passant par ces deux points, et qui sont entre A et B (ces derniers points sont inclus dans le segment). On étend la définition précédente au cas où les deux points A et B sont confondus ; le segment [AA] se réduit alors au point A : [AA] = {A}.

19 19 Concepts de base. Segment. La longueur dun segment est la distance entre ses extrémités. Le milieu du segment est un point du segment, équidistant de ses extrémités.

20 20 Concepts de base. Distance. La distance entre deux objets géométriques est la plus petite distance entre deux points, chacun appartenant à lun de ces objets La distance entre deux objets géométriques non disjoints est égale à zéro Exemples: le cas de deux segments, un point et une droite, un point et un segment

21 21 Concepts de base. Angle. Un angle est la portion de plan comprise entre deux demi-droites de même origine Lorigine commune est le sommet de langle Les deux demi-droites sont les côtés de langle Langle se mesure dans le sens antihoraire (cest-à-dire la mesure de langle dans le sens horaire est négative)

22 22 Concepts de base. Mesure dun angle en degrés. 1 o est la mesure dun angle au centre (dun cercle) interceptant le 1/360 e de la circonférence du cercle Un angle au centre qui intercepte le quart de la circonférence a pour mesure 90 o (un angle droit). Deux demi droites (droites) sont perpendiculaires si leur angle est droit Un angle au centre qui intercepte la moitié de la circonférence a pour mesure 180 o (un angle plat)

23 23 Concepts de base. Mesure dun angle en radians. 1 rad (radian) est la mesure dun angle au centre interceptant sur la circonférence un arc de longueur égale au rayon du cercle Un angle plat a une mesure de rad

24 24 Concepts de base. Plan. En mathématiques, un plan est un objet fondamental à deux dimensions. Intuitivement il peut être visualisé comme une feuille d'épaisseur nulle qui s'étend à l'infini. L'essentiel du travail fondamental en géométrie et en trigonométrie s'effectue en deux dimensions donc dans un plan.

25 25 Concepts de base. Plan. Trois points distincts et non alignés; Une droite et un point n'appartenant pas à cette droite; Deux droites non confondues et sécantes; Deux droites non confondues et parallèles;

26 26 Concepts de base. Plan cartésien Dans le plan cartésien, les points sont définis à l'aide de leurs coordonnées dites cartésiennes. Sur le plan cartésien il y a deux droites ordonnées perpendiculaires appelées axes (axe des abscisses - x et axe des ordonnées y). Leur point commun est appelé lorigine Soit un points A dans le plan cartésien. On appelle (x A,y A ) les coordonnées du point A si x A est la distance entre point A et laxe des ordonnées et y A est la distance entre point A et laxe des abscisses. On appelle x A labscisse et y A lordonnée du point A.

27 27 Concepts de base. Droite dans un plan cartésien Léquation Ax+By+C=0 pour trois constantes quelconques A, B, et C désigne une droite dans un plan cartésien Seulement les coordonnées cartésiennes des points appartenants à la droite respectent son équation


Télécharger ppt "1 MAT3253 Géométrie I Professeur: Jurek Czyzowicz Consultations: Lundi 10h-11h30 Mercredi 10h00 – 11h30."

Présentations similaires


Annonces Google