La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Inéquations du premier degré à une inconnue a < 16x > 253x + 5 ≤ - 407d - 13 ≤ d.

Présentations similaires


Présentation au sujet: "Inéquations du premier degré à une inconnue a < 16x > 253x + 5 ≤ - 407d - 13 ≤ d."— Transcription de la présentation:

1 Inéquations du premier degré à une inconnue a < 16x > 253x + 5 ≤ - 407d - 13 ≤ d

2 Inégalité Une inégalité est un énoncé mathématique qui permet la comparaison entre deux expressions numériques à l’aide d’un symbole d’inégalité. Définition : Symbole d’inégalité SignificationExemple <« est inférieur à » ou « est plus petit que »8 < 8,1 >« est supérieur à » ou « est plus grand que »7 > 4,99 ≤« est inférieur ou égal à » ou « est plus petit ou égal à » −10 ≤ -5 ≥« est supérieur ou égal à » ou « est plus grand ou égal à » 2 3 ≥ 2 × 3

3 Inéquation Une inéquation est un énoncé mathématique comportant une ou des variables et un symbole d’inégalité. Définition : Exemples : a < 16x > 253x + 5 ≤ - 407d - 13 ≤ d L’ensemble des valeurs qui vérifient une inéquation est appelé l’ensemble solution.

4 Écris algébriquement, à l’aide d’intervalles et sur la droite numérique, l’ensemble solution des inéquations suivantes : Algébriquement En intervallesDroite numérique x est inférieur à 23 :x < 23 ∞ -, 23 [ ∞ + [ 12, 0 23 x est supérieur ou égal à 12 : x ≥ ∞ + [ -6, x n’est pas plus petit que -6: x ≥ x est inférieur ou égal à 3 :x ≤ ∞ -, 3 ] x est plus grand que 6 : x > ∞ + ] 6,

5 Écris algébriquement, à l’aide d’intervalles et sur la droite numérique, les inéquations suivantes : Algébriquement En intervallesDroite numérique x vaut au maximum 10 :x ≤ 10 ∞ -, 10 ] ∞ + [ 10, 0 10 x vaut au moins 10 : x ≥ ∞ + ] -5, x est supérieur à -5 : x > x vaut au plus 2 :x ≤ ∞ -, 2 ] x vaut au minimum 2 :x ≥ ∞ + [ 2,

6 Écris algébriquement, à l’aide d’intervalles et sur la droite numérique, les inéquations suivantes : Algébriquement En intervallesDroite numérique x vaut au maximum 10 et au minimum -3 : -3 ≤ x ≤ 10[ -3, 10 ] ] 2, 7 ] x est plus grand que 2 mais plus petit ou égal à 7 : 2 < x ≤ 7 ] 0, 5 [ cm Un segment est inférieur à 5 cm : 0 cm < s < 5 cm La vitesse moyenne a été d’au plus 100 km/h : 0 km/h ≤ v ≤ 100 km/h[ 0, 100 ] km/h

7 Ensemble solution x > 4, où x représente le nombre de personnes présentes à une réunion … ∞ + 5, 6, 7, 8, 9, 10, 11, … Droite numérique Entre accolades { } x N x > 4 ou Exemple 1 :

8 Ensemble solution x > 4, où x représente la mesure (en cm) du côté d’un carré … ∞ + Droite numérique Entre accolades { } ou entre crochets [ ] x R x > 4 Exemple 2 : ou 4, ∞ + x

9 Règles de transformation des inéquations Les règles de transformation des inéquations permettent d’obtenir des inéquations équivalentes, c’est-à-dire des inéquations ayant le même ensemble solution. Additionner ou soustraire un même nombre aux deux membres d’une inéquation conserve le sens de cette inéquation. 2a + 5 > 6 2a > 1 – 5 Inéquations équivalentes 5a – 6 ≤ 16 5a ≤ Inéquations équivalentes Plusieurs des règles de transformation des équations servent à résoudre des inéquations. Cependant les inéquations possèdent trois règles particulières :

10 Règles de transformation des inéquations Multiplier ou diviser les deux membres d’une inéquation par un même nombre positif conserve le sens de cette inéquation. a – 2 ≥ -5 Inéquations équivalentes 8 – 5a > 14 Inéquations équivalentes 3a – 6 ≥ -15 ÷ 3 () 4 – 2,5a > 7 × 2 () 3a – 6 ≥

11 Règles de transformation des inéquations Multiplier ou diviser les deux membres d’une inéquation par un même nombre négatif inverse le sens de cette inéquation. Pour bien comprendre cette règle, prenons un exemple à partir d’une inégalité < X -4 < 2 X < < X -4 < -2 X -3 8 < 6 en inversant le signe 8 > 6 VraiFaux Vrai

12 Règles de transformation des inéquations Multiplier ou diviser les deux membres d’une inéquation par un même nombre négatif inverse le sens de cette inéquation. -3a > 21 a < -7 Inéquations équivalentes 4 – 8a ≥ a ≤ - 52 Inéquations équivalentes ÷ -3 () × -2 () Remarque:Pour connaître les valeurs numériques que peut prendre la variable, il faut toujours que celle-ci soit positive dans l’inéquation. -3a > a ≤ 4donc - a ≤ 4 a ≥ -4 ou- a ≤ 4 -1 X X -1 a ≥ -4 Exemple:

13 3 x - 5 ≥ 10 3 x ≥ x ≥ x ≥ 5 5, ∞ + x Vérifions pour quelques valeurs de x: 3 x - 5 ≥ 10 Pour x = 5 3 X 5 – 5 ≥ 1010 ≥ 10inégalité vraie Pour x = 20 3 X 20 – 5 ≥ 1055 ≥ 10inégalité vraie Pour x = 2 3 X 2 – 5 ≥ 101 ≥ 10inégalité fausse Résoudre une inéquation, c’est trouver les valeurs de x qui rendent l’inégalité vraie.

14 Résous les inéquations suivantes et donne la réponse algébriquement et en intervalles. 2x + 50 ≥ 250 2x + 50 – 50 ≥ 250 – 50 2x ≥ x ≥ , ∞ + x -5x > x – 100 > 100 – x > 0 -5 x < 0 ∞ -, 0 x

15 Résolution d’une inéquation Déterminer les valeurs qui vérifient une inéquation, c’est résoudre cette inéquation. Dans un problème, on utilise parfois des inéquations pour trouver la solution. Le périmètre d’un terrain rectangulaire est d’au moins 178 m. Sa longueur mesure 5 m de plus que le triple de sa largeur. On s’intéresse aux dimensions possibles du terrain. Exemple : 1. Les inconnues sont : La largeur du terrain La longueur du terrain 2. Largeur du terrain (en m) : x Longueur du terrain (en m) : 3 x + 5

16 3.L’expression 2 ( 3 x x ) correspond au périmètre du terrain. 4.Résoudre l’inéquation: 5. On déduit que la largeur du terrain doit être d’au moins 21 m. Par exemple, le terrain pourrait mesurer 21 m sur 68 m. On a donc : 2( x + 3 x + 5) ≥ 178 2(4 x + 5) ≥ x + 10 ≥ x ≥ 168 x ≥ 21 Périmètre: 2 ( L + l ) 8 x + 10 – 10 ≥ 178 –

17 5. On déduit que la largeur du terrain doit être d’au moins 21 m. Par exemple, le terrain pourrait mesurer 21 m sur 68 m. Possibilités: 21 m3 X = 68 m 22 m3 X = 71 m 25 m3 X = 80 m 30 m3 X = 95 m largeur : x longueur: 3 x + 5 périmètre: 178 m 186 m 210 m 250 m ………

18 c Pour quelles valeurs de c le volume de ce cube est-il inférieur à 343 cm 3 ? Volume cube = c 3 c < Volume < 343 cm 3 c 3 < 343 cm 3 donc c < 7 cm Mais pour que le cube puisse exister, la valeur de c doit être : - positive, car une mesure négative en géométrie est impossible ; - plus grande que 0, car pour c = 0 cm, il n’y aurait pas de cube. Remarque : avec les inéquations, il faut souvent poser des conditions. Réponse :0 cm < c < 7 cm Il faut donc restreindre les valeurs de c. soit 07

19 Remarque : Résoudre une équation du premier degré à une variable ne donne qu’une seule valeur possible pour la variable. Exemple:2x + 12 = 30 2x + 12 – 12 = 30 – 12 2x = x = 9 Résoudre une inéquation du premier degré à une variable donne plusieurs valeurs possibles pour la variable. Exemple:2x + 12 ≥ 30 2x + 12 – 12 ≥ 30 – 12 2x ≥ x ≥ 9soit 9, ∞ + x


Télécharger ppt "Inéquations du premier degré à une inconnue a < 16x > 253x + 5 ≤ - 407d - 13 ≤ d."

Présentations similaires


Annonces Google