La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

CHAPITRE 2 Théorème de Thalès. Lors dun voyage en Egypte, Thalès de Milet (-624 ;-546) aurait mesuré la hauteur de la pyramide de Kheops par un rapport.

Présentations similaires


Présentation au sujet: "CHAPITRE 2 Théorème de Thalès. Lors dun voyage en Egypte, Thalès de Milet (-624 ;-546) aurait mesuré la hauteur de la pyramide de Kheops par un rapport."— Transcription de la présentation:

1 CHAPITRE 2 Théorème de Thalès

2 Lors dun voyage en Egypte, Thalès de Milet (-624 ;-546) aurait mesuré la hauteur de la pyramide de Kheops par un rapport de proportionnalité avec son ombre. Citons : « Le rapport que jentretiens avec mon ombre est le même que celui que la pyramide entretient avec la sienne. » Par une relation de proportionnalité, il obtient la hauteur de la pyramide grâce à la longueur de son ombre. L'idée ingénieuse de Thalès est la suivante : « A l'instant où mon ombre sera égale à ma taille, l'ombre de la pyramide sera égale à sa hauteur. »

3 Objectifs: -Connaître et utiliser le théorème de Thalès. -Connaître et utiliser la réciproque du théorème de Thalès. - Utiliser les agrandissements ou les réductions daires et de volumes.

4 I. Théorème de Thalès 1) Les configurations Situation 4èmeSituation papillon

5 2) Lénoncé du théorème Soient (d ) et (d ) deux droites sécantes en A. Soient B et M deux points de (d ), distincts de A. Soient C et N deux points de (d ), distincts de A. Si les droites (BC) et (MN) sont parallèles Alors Remarque : Ce théorème permet, entre autre, de calculer des longueurs. Voir une démonstration de ce théorème dans le cahier dexercices.

6 Exemple :Calculer BR et EA. Donner une valeur exacte et éventuellement une valeur approchée à 0,01 centimètre près. E D C P R B A (EA)//(PR)//(CD) EB = 2 cm, BD = 5 cm, PR = 4 cm, CD = 6 cm. 1 ) Comme P appartient à (BC), R appartient à (BD) (PR) et (CD) sont parallèles, daprès le théorème de Thalès on a : BR = 5 x 4 ÷ 6 (produit en croix) = cm 3,33 cm.

7 E D C P R B A 2) Comme E appartient à (BD) A appartient à (BC) (EA) et (CD) sont parallèles daprès le théorème de Thalès on a : EA = 6 x 2 ÷ 5 (produit en croix) = 2,4 cm.

8 3) Application: partage dun segment Un segment [AB] étant donné. Construire sans règle graduée le point M sur le segment [AB] tel que :

9 II. Réciproque du théorème de Thalès Soient (d ) et (d ) deux droites sécantes en A. Soient B et M deux points de (d ), distincts de A. Soient C et N deux points de (d ), distincts de A. Si Alors et si les points A, B, M et les points A, C, N sont alignés dans le même ordre les droites (BC) et (MN) sont parallèles. Nous admettons désormais que cette réciproque est connue pour pouvoir lutiliser. Remarque : Cette réciproque permet de démontrer que des droites sont parallèles.

10 Exemples : 1) Les droites (AB) et (DE) sont-elles parallèles ? B C P R D E 1,5 A 3 4, ,5 On a et De plus les points A, C et E sont alignés dans le même ordre ainsi que les points B, C et D daprès la réciproque du théorème de Thalès, (AB) et (DE) sont parallèles donc

11 2) Les droites (PR) et (DE) sont-elles parallèles ? B C P R D E 1,5 A 3 4, ,5 On a et (PR) et (DE) ne sont pas parallèles. donc On ne peut pas utiliser la réciproque du théorème de Thalès.

12 III. Réduction-Agrandissement 1) Définitions - La réduction de rapport k dun objet est la transformation qui multiplie toutes les longueurs par un nombre positif k tel que 0 < k < 1. Exemple : Cube A Cube B On passe du Cube A au Cube B par une réduction de coefficient k = ½. (les dimensions du cube A sont toutes multipliées par ½ pour obtenir celle du cube B)

13 - Lagrandissement de rapport k dun objet est la transformation qui multiplie toutes les longueurs par un nombre k tel que k > 1. Exemple : On passe du Cube B au Cube C par un agrandissement de coefficient k = 3. Cube BCube C (les dimensions du cube B sont toutes multipliées par 3 pour obtenir celle du cube C)

14 2) Propriétés Dans un agrandissement ou une réduction de rapport k, (k > 0) - Les aires sont multipliées par k² - Les volumes sont multipliés par k 3 Exemples : - Laire de la face de devant du Cube A est 4 cm². On passe du Cube A au Cube B par une réduction de coefficient k = ½. Donc laire du cube B est : 4 x ( ½)² = 4 x ¼ = 1 cm² - Le volume du Cube B est de 1 cm 3. On passe du Cube B au Cube C par un agrandissement de coefficient k = 3. Donc le volume du Cube C est : 1 x 3 3 = 1 x 27 = 27 cm 3

15 S O' A' 3) Section d'un cône de révolution par un plan parallèle à la base Le triangle SOA rectangle en O engendre un cône de révolution de hauteur 20 cm et de rayon de base 6 cm. On réalise la section de ce cône par le plan parallèle à la base passant par O', un point de [SO], tel que SO' = 2 cm. O A S O' A'

16 Daprès le théorème de Thalès dans le triangle SAO sachant que O appartient à [SO], A appartient à [SA] et que (OA) est parallèle à (OA), on a : Donc le petit cône est une réduction du grand cône de coefficient Or, le volume du grand cône est égal à : Donc le volume du petit cône est égal à :


Télécharger ppt "CHAPITRE 2 Théorème de Thalès. Lors dun voyage en Egypte, Thalès de Milet (-624 ;-546) aurait mesuré la hauteur de la pyramide de Kheops par un rapport."

Présentations similaires


Annonces Google